

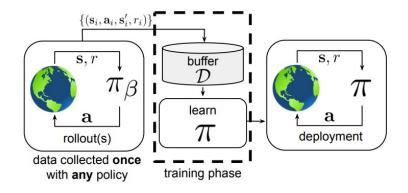
DMBP: Diffusion Model-Based Predictor for Robust Offline Reinforcement Learning against State Observation Perturbations

Zhihe Yang, Yunjian Xu*

The Chinese University of Hong Kong
*Corresponding author

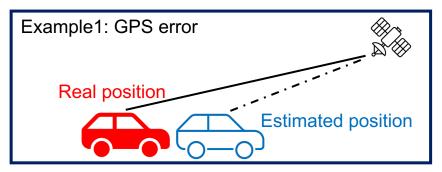
Offline Reinforcement Learning

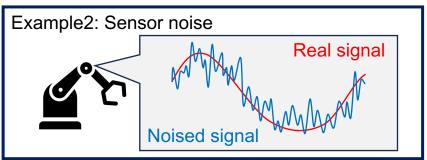
Diagram of Offline RL^[1]:



One challenge for real-world application of offline RL:

State observation perturbations





State observation perturbations

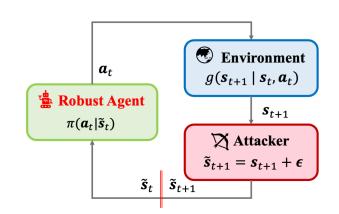
Classical solution:

Smooth policy

overconservative and sensitive to noise scales

Adversarially trained policy:

not applicable in offline training manner



State observation perturbations

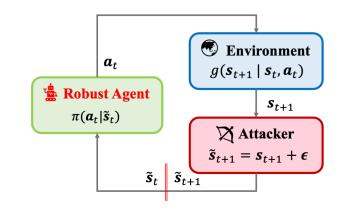
Classical solution:

Smooth policy

overconservative and sensitive to noise scales

Adversarially trained policy:

not applicable in offline training manner



Our solution (Diffusion Model-Based Predictor):

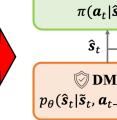
Recover the actual states for decision-making.

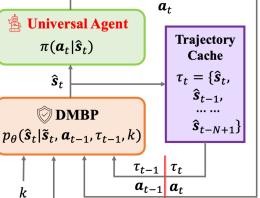
Main challenge: Error accumulation

Our contribution:

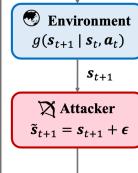
Novel framework for robust RL

Non-Markovian loss function





 \tilde{s}_{t+1}



State observation perturbations

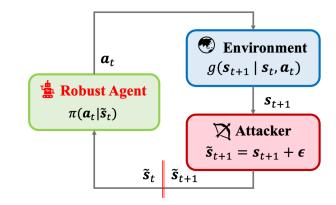
Classical solution:

Smooth policy

overconservative and sensitive to noise scales

Adversarially trained policy:

not applicable in offline training manner



Our solution (Diffusion Model-Based Predictor):

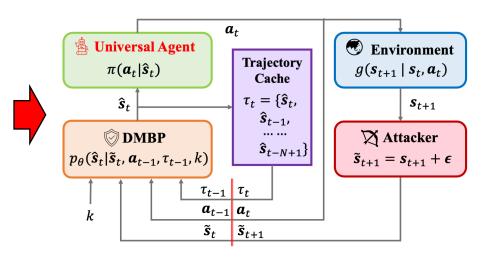
Recover the actual states for decision-making.

Main challenge: Error accumulation

Our contribution:

Novel framework for robust RL

Non-Markovian loss function



Advantages of DMBP:

- Combinable with any offline RL algorithms.
- Applicable for different scales of noises.
- Applicable for incomplete state observations with unobserved dimensions.
- Does not lead to over-conservative policy.

DMBP for Predicting Real States

Notation: s_t — original state; \tilde{s}_t — noised state; \hat{s}_t — recovered state. Superscript i — diffusion timesteps; Subscript t — RL timesteps.

Sampling of denoised state \hat{s}_t :

$$\hat{\boldsymbol{s}}_t \sim p_{\theta}(\tilde{\boldsymbol{s}}_t^{0:k} \mid \boldsymbol{a}_{t-1}, \boldsymbol{\tau}_{t-1}^{\hat{\boldsymbol{s}}})$$

$$= f_k(\tilde{\boldsymbol{s}}_t) \prod_{i=1}^k p_{\theta}(\tilde{\boldsymbol{s}}_t^{i-1} \mid \tilde{\boldsymbol{s}}_t^i, \boldsymbol{a}_{t-1}, \boldsymbol{\tau}_{t-1}^{\hat{\boldsymbol{s}}})$$

where $f_k(\tilde{\boldsymbol{s}}_t) = \sqrt{\bar{\alpha}_k} \tilde{\boldsymbol{s}}_t$.

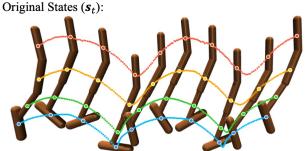
Reverse diffusion chain:

Following [1], we model transitions $p_{\theta}(\tilde{s}_{t}^{i-1} \mid \tilde{s}_{t}^{i}, \boldsymbol{a}_{t-1}, \boldsymbol{\tau}_{t-1}^{\hat{s}})$ as Gaussian process:

$$egin{aligned} & ilde{m{s}}_t^{i-1} \mid ilde{m{s}}_t^i \ & = rac{ ilde{m{s}}_t^i}{\sqrt{lpha_i}} - rac{eta_i}{\sqrt{lpha_i(1-ar{lpha}_i)}} m{\epsilon}_{ heta}(ilde{m{s}}_t^i, m{a}_{t-1}, m{ au}_{t-1}^{\hat{m{s}}}, i) + \sqrt{ ilde{eta}_i} m{\epsilon} \end{aligned}$$

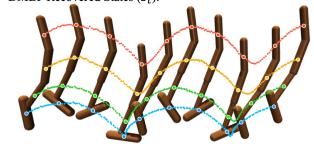
where $\epsilon_{\theta}(\tilde{s}_t^i, a_{t-1}, \tau_{t-1}^{\hat{s}}, i)$ is the neuron-network predicted noise.

hopper-medium-replay-v2 (Gaussian Noise with std of 0.10)



Observed Noised States (\tilde{s}_t) :

DMBP Recovered States (\hat{s}_t) :



Non-Markovian Loss (Main Contribution)

Problem with classical training of diffusion models:

The accuracy of the current denoising result \hat{s}_t is highly dependent on the accuracy of the diffusion condition $\tau_{t-1}^{\hat{s}}$.

$$\left\{ \begin{array}{l} \text{Training phase: } \epsilon_{\theta}(\tilde{s}_{t}^{i}, \boldsymbol{a}_{t-1}, \boldsymbol{\tau_{t-1}^{s}}, i) \\ \text{Testing phase: } \epsilon_{\theta}(\tilde{s}_{t+1}^{i}, \boldsymbol{a}_{t}, \boldsymbol{\tau_{t-1}^{\hat{s}}}, i) \end{array} \right\} \text{ Severe error-accumulation}$$

Our Proposed Non-Markovian training objective:

$$\mathcal{L}_{\text{entropy}} = \sum_{t=2}^{T} \mathbb{E}_{\boldsymbol{s}_{t} \in \boldsymbol{\tau}, q(\boldsymbol{s}_{t})} \left[-\log P(\hat{\boldsymbol{s}}_{t} \mid \boldsymbol{a}_{t-1}, \boldsymbol{\tau}_{t-1}^{\hat{\boldsymbol{s}}}) \right]$$

Along RL Trajectory

Condition on denoised trajectory

Closed form expression:

$$\mathcal{L}_{\text{simple}}(\theta) = \mathbb{E}_{\boldsymbol{s}_{1} \sim d_{0}, \boldsymbol{\epsilon}_{t}^{i} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}), i \sim \mathcal{U}_{K}} \begin{bmatrix} \sum_{t=2}^{T} \|\boldsymbol{\epsilon}_{\theta}(\tilde{\boldsymbol{s}}_{t}^{i}, \boldsymbol{a}_{t-1}, \boldsymbol{\tau}_{t-1}^{\hat{\boldsymbol{s}}}, i) - \boldsymbol{\epsilon}_{t}^{i}\|^{2} \end{bmatrix},$$

$$\boldsymbol{\tau}_{t-1}^{\hat{\boldsymbol{s}}} := \{\hat{\boldsymbol{s}}_{j} \mid j \leq t-1\}$$

$$\hat{\boldsymbol{s}}_{j} = \begin{cases} \boldsymbol{s}_{1} & \text{if } j = 1, \\ f_{k}(\tilde{\boldsymbol{s}}_{j}^{k}) \prod_{i=1}^{k} p_{\theta}(\tilde{\boldsymbol{s}}_{j}^{i-1} \mid \tilde{\boldsymbol{s}}_{j}^{i}, \boldsymbol{a}_{j-1}, \boldsymbol{\tau}_{j-1}^{\hat{\boldsymbol{s}}}) & \text{otherwise } (j \in \{2, \dots, t-1\}). \end{cases}$$

Non-Markovian Loss (Main Contribution)

Practical Loss function:

(N: condition trajectory length M: sample trajectory length)

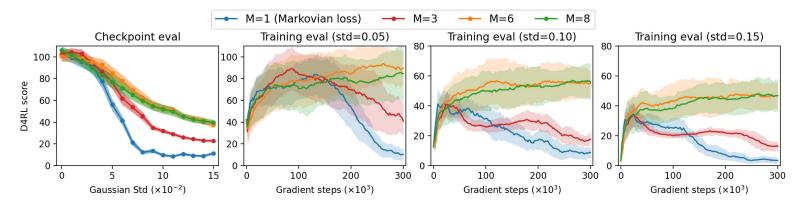
$$\mathcal{L}(\theta) = \mathbb{E}_{i \sim \mathcal{U}_K, \epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), (s_{t-N}, \dots, s_{t+M-1}) \in \mathcal{D}_{\nu}} \underbrace{\left[\underbrace{\|\boldsymbol{\epsilon}_{\theta}(\tilde{\boldsymbol{s}}_t^i, \boldsymbol{a}_{t-1}, \boldsymbol{\tau}_{t-1}^s, i) - \boldsymbol{\epsilon}_t^i\|^2}_{L_t} + \underbrace{\left[\underbrace{\|\boldsymbol{\epsilon}_{\theta}(\tilde{\boldsymbol{s}}_t^i, \boldsymbol{a}_{t-1}, \boldsymbol{\tau}_{t-1}^s, i) - \boldsymbol{\epsilon}_t^i\|^2}_{L_t} + \underbrace{\left[\underbrace{\|\boldsymbol{\epsilon}_{\theta}(\tilde{\boldsymbol{s}}_t^i, \boldsymbol{a}_{t-1}, \boldsymbol{\tau}_{t-1}^s, i) - \boldsymbol{\epsilon}_t^i\|^2}_{L_t} + \underbrace{\left\|\boldsymbol{\epsilon}_{\theta}(\tilde{\boldsymbol{s}}_m^i, \boldsymbol{a}_{m-1}, \boldsymbol{\tau}_{m-1}^s, i) - \boldsymbol{\epsilon}_m^i\|^2}_{L_t} \right]},$$
Additional term of our non-Markovian loss

$$\begin{array}{l} \text{Trajectory} \\ \text{condition for} \\ \text{predictor } \boldsymbol{\epsilon}_{\boldsymbol{\theta}} \end{array} \left\{ \begin{array}{l} \text{in } \boldsymbol{L_t} \text{: } \boldsymbol{\tau_{t-1}^s} = \{\boldsymbol{s}_{t-N}, \dots, \boldsymbol{s}_{t-1}\} \\ \\ \text{in } \boldsymbol{L_m} \text{: } \boldsymbol{\tau_{m-1}^{\breve{s}}} = \{\breve{\boldsymbol{s}}_j \mid j \in \{m-N, \dots, m-1\}\} \end{array} \right.$$

$$\check{\boldsymbol{s}}_{j} = \begin{cases}
\boldsymbol{s}_{j} & \text{if } j < t, \\
\frac{1}{\sqrt{\bar{\alpha}_{i}}} \left[\tilde{\boldsymbol{s}}_{j}^{i} - \sqrt{1 - \bar{\alpha}_{i}} \boldsymbol{\epsilon}_{\theta}(\tilde{\boldsymbol{s}}_{j}^{i}, \boldsymbol{a}_{j-1}, \boldsymbol{\tau}_{j-1}^{\check{\boldsymbol{s}}}, i) \right] & \text{otherwise } (j \in \{t, \dots, t + M - 2\}).
\end{cases}$$

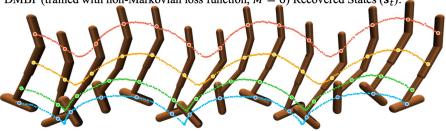
Ablation Study

hopper-expert-v2 (prone to error accumulation)



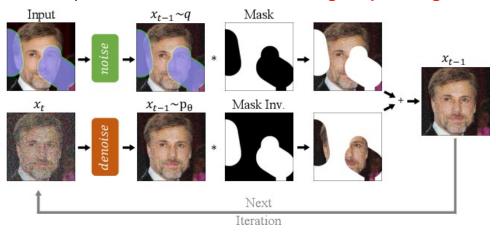
DMBP (trained with classical Markovian loss function, M = 1) Recovered States (\hat{s}_t):

DMBP (trained with non-Markovian loss function, M = 6) Recovered States (\hat{s}_t):



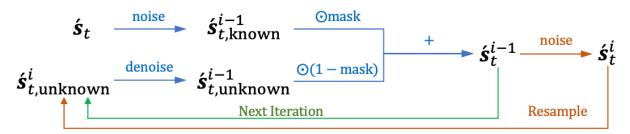
State Infilling for Unobserved Dimensions

Diffusion models have been proved to be successful in **Image inpainting** tasks^[1]:



Real world circumstance: compromised sensors ($\dot{s}_t = s_t \odot \text{mask}$)

Recover the missing part of state observation utilizing "resample" technique[1].



Experiment (Noised Observations)

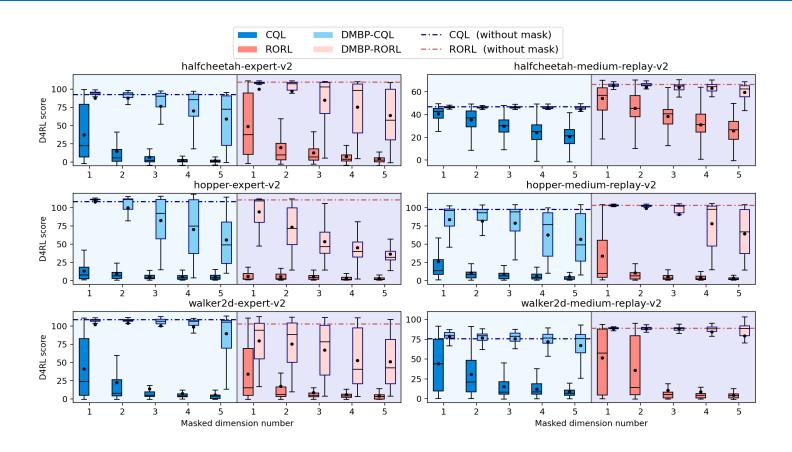
> Gaussian random noises

Env	Dataset	Noise		CQ	CQL		TD3+BC		Diffusion QL		RORL	
		scale	base	DMBP	base	DMBP	base	DMBP	base	DMBP	base	DMBP
HalfCheetah	e	0	96.9 ± 1.8	-	93.0 ± 6.1	-	95.8 ± 8.9	-	92.9 ± 10.7	-	108.5 ± 11.2	-
		0.05	4.5 ± 2.6	60.2 ± 23.9	18.1 ± 8.6	60.9 ± 22.5	7.3 ± 6.6	77.1 ± 15.5	4.8 ± 3.6	75.2 ± 20.7	15.4 ± 3.9	55.7 ± 29.2
		0.10	4.5 ± 2.5	26.8 ± 16.2	7.4 ± 4.0	40.5 ± 16.6	4.7 ± 3.6	47.5 ± 22.2	3.3 ± 2.5	39.8 ± 21.8	3.7 ± 1.9	32.8 ± 20.4
	m-r	0	41.6 ± 4.2	1-1	47.0 ± 1.0	-	45.2 ± 0.9	-	47.7 ± 0.8	-1	66.7 ± 1.4	-
		0.10	20.6 ± 6.9	38.5 ± 11.2	35.6 ± 1.3	45.8 ± 1.0	28.5 ± 5.5	44.3 ± 1.0	30.1 ± 4.1	45.6 ± 0.9	43.5 ± 2.4	61.9 ± 1.2
		0.15	14.8 ± 10.2	35.1 ± 8.7	28.8 ± 1.5	44.6 ± 1.1	24.0 ± 8.9	42.5 ± 2.6	24.2 ± 7.6	44.6 ± 3.0	30.3 ± 5.9	58.4 ± 1.2
Hopper	e	0	88.4 ± 22.4	-	109.1 ± 13.7	-	108.9 ± 10.5	-	104.9 ± 15.1	-	110.4 ± 3.1	-
		0.05	34.3 ± 13.4	61.0 ± 25.2	41.2 ± 21.8	85.7 ± 26.2	32.2 ± 18.4	79.1 ± 28.2	38.2 ± 12.4	84.8 ± 27.4	56.9 ± 34.9	64.3 ± 19.8
		0.10	24.3 ± 10.9	37.1 ± 18.5	24.3 ± 11.8	48.8 ± 20.4	22.7 ± 11.6	32.6 ± 18.7	24.0 ± 9.3	56.1 ± 17.3	24.1 ± 20.2	37.5 ± 10.5
	m-r	0	78.7 ± 19.6		96.9 ± 8.8	-	80.9 ± 24.5	-	95.7 ± 17.2	-	103.1 ± 0.8	-
		0.10	15.7 ± 9.0	66.8 ± 17.3	47.5 ± 21.6	89.1 ± 12.4	14.4 ± 12.3	71.9 ± 24.5	25.9 ± 12.4	85.9 ± 20.9	85.9 ± 29.5	103.2 ± 1.3
		0.15	11.1 ± 7.2	64.5 ± 17.2	33.7 ± 21.2	80.7 ± 16.5	9.6 ± 7.3	66.1 ± 22.8	17.9 ± 11.5	72.2 ± 22.9	51.1 ± 22.3	104.2 ± 3.2
Walker2d	e	0	111.6 ± 0.6	-	108.8 ± 1.9	_	110.7 ± 0.5	_	109.6 ± 0.5	2	104.8 ± 12.5	-
		0.10	77.9 ± 37.6	110.3 ± 2.0	97.6 ± 21.9	94.3 ± 20.3	72.9 ± 39.4	109.2 ± 1.5	93.3 ± 27.2	109.1 ± 4.0	95.4 ± 19.7	97.8 ± 20.2
		0.15	28.2 ± 32.4	104.2 ± 13.5	78.9 ± 33.2	83.4 ± 23.3	9.2 ± 13.6	107.5 ± 5.2	30.5 ± 32.5	94.5 ± 18.1	81.6 ± 26.4	84.5 ± 26.4
	m-r	0	50.6 ± 31.6		79.9 ± 4.8	-	84.7 ± 9.8	-	93.1 ± 10.9	-	88.7 ± 1.9	
		0.10	14.7 ± 11.1	53.1 ± 28.5	70.8 ± 18.9	78.7 ± 7.2	40.7 ± 25.3	84.4 ± 8.7	59.6 ± 31.8	92.6 ± 10.6	88.6 ± 1.1	88.4 ± 2.5
		0.15	11.2 ± 5.9	52.9 ± 29.9	48.6 ± 26.5	73.6 ± 10.1	16.5 ± 12.8	77.9 ± 17.2	19.2 ± 15.7	91.3 ± 9.6	89.4 ± 1.2	89.0±4.5

➤ Uniform random noises (U-rand), Maximum action difference attack (MAD), and Minimum Q-value attack (MinQ)

Env	Dataset/	Noise BC		CQ CQL		TD3+BC		Diffusion QL		RORL		
LIIV	Noise Scale	Type	base	DMBP								
HalfCheetah	e 0.05	U-rand	7.4 ± 4.9	69.1±21.5	27.2 ± 6.4	69.6±22.4	16.3 ± 13.1	84.2 ± 17.1	11.6 ± 10.9	77.8 ± 21.8	24.3±7.5	66.8 ± 27.0
		MAD	3.6 ± 1.7	52.5 ± 17.9	12.4 ± 6.9	61.2 ± 19.7	4.7 ± 3.5	65.4 ± 16.0	4.3 ± 3.2	62.9 ± 13.2	14.1 ± 2.5	54.3 ± 27.1
		MinQ	12.8 ± 9.3	51.8 ± 23.9	19.4 ± 11.3	60.4 ± 19.4	18.0 ± 4.2	88.2 ± 11.3	8.0 ± 6.7	71.1 ± 15.2	9.3 ± 8.8	71.0 ± 29.1
	m-r 0.10	U-rand	31.5 ± 10.6	40.3 ± 5.9	40.9 ± 2.6	46.4 ± 1.8	36.9 ± 6.6	46.9 ± 1.1	38.5 ± 5.7	46.8 ± 0.9	39.9 ± 2.3	61.2 ± 1.1
		MAD	19.2 ± 8.2	29.4 ± 6.9	29.0 ± 2.6	46.5 ± 0.9	27.1 ± 3.4	36.2 ± 0.9	22.3 ± 3.8	34.5 ± 5.5	22.5 ± 1.5	62.3 ± 1.0
		MinQ	5.1 ± 5.2	36.7 ± 8.8	39.2 ± 0.8	46.2 ± 1.1	36.7 ± 6.8	44.8 ± 1.1	37.0 ± 4.8	38.6 ± 1.1	34.0 ± 1.4	63.2 ± 2.3
Hopper	e 0.05	U-rand	46.1±20.7	66.9 ± 26.3	59.6±29.4	95.7±23.8	42.6 ± 28.4	84.0 ± 27.4	53.2±20.8	84.4±25.3	85.3±37.0	81.9 ± 25.2
		MAD	31.1 ± 14.4	53.2 ± 24.2	22.6 ± 13.9	73.9 ± 27.9	27.2 ± 10.9	60.3 ± 27.2	36.8 ± 9.0	37.1 ± 12.3	36.6 ± 22.2	59.0 ± 13.8
		MinQ	47.4 ± 18.9	62.5 ± 27.9	32.7 ± 13.5	58.7 ± 17.9	45.3 ± 27.5	95.7 ± 27.6	66.7 ± 33.6	59.2±23.9	79.8 ± 32.7	59.4 ± 22.1
	m-r 0.10	U-rand	18.5 ± 8.2	68.9 ± 19.2	66.3 ± 20.1	95.9 ± 8.8	20.6 ± 9.1	65.4 ± 22.0	33.9 ± 10.7	94.9 ± 17.7	80.7 ± 28.0	103.5 ± 1.5
		MAD	5.1 ± 5.0	37.5 ± 26.1	32.1 ± 15.9	88.9 ± 13.7	6.1 ± 5.5	64.3 ± 21.8	9.9 ± 8.1	38.3 ± 15.8	51.6 ± 30.7	97.5 ± 2.5
		MinQ	5.3 ± 5.4	18.3 ± 18.4	84.6 ± 14.1	87.5 ± 6.6	11.8 ± 7.6	80.5 ± 18.1	51.2 ± 25.1	62.5 ± 27.3	98.3 ± 6.2	103.2 ± 2.4
Walker2d	e 0.10	U-rand	102.1 ± 1.8	110.4 ± 0.8	106.1±9.9	106.0 ± 7.4	106.1 ± 2.9	110.0 ± 0.5	107.2 ± 1.0	109.4 ± 0.5	95.1±15.7	97.2±9.5
		MAD	50.5 ± 43.7	70.5 ± 13.3	64.1 ± 27.0	97.6 ± 16.1	19.9 ± 22.7	69.7 ± 17.5	36.6 ± 35.5	88.2 ± 24.8	61.9 ± 29.2	83.8 ± 19.9
		MinQ	99.9 ± 22.2	105.6 ± 1.1	99.9 ± 11.8	102.4 ± 6.9	91.9 ± 22.4	105.5 ± 1.3	101.1 ± 2.0	102.4 ± 1.3	91.8 ± 28.0	89.3 ± 13.3
	m-r 0.15	U-rand	17.3 ± 12.2	54.9 ± 25.7	69.2±20.9	78.1 ± 9.2	51.2 ± 28.3	83.6 ± 14.8	64.2 ± 27.8	91.1±12.1	89.9±1.1	88.7 ± 2.1
		MAD	6.6 ± 3.3	43.4 ± 29.8	19.7 ± 14.7	78.4 ± 8.8	8.8 ± 4.4	70.8 ± 19.1	7.2 ± 2.3	66.1 ± 24.2	81.9 ± 11.5	90.5 ± 3.5
		MinQ	7.3 ± 4.2	30.3 ± 26.1	66.5 ± 11.8	78.5 ± 4.2	21.7 ± 15.9	76.4 ± 14.9	47.2 ± 23.2	68.0 ± 19.5	82.3 ± 1.4	89.6 ± 1.7

Experiment (Incomplete Observations)



Baseline Algorithm:

- [1] Fujimoto, Scott, et al. "Off-policy deep reinforcement learning without exploration." International conference on machine learning. PMLR, 2019.
- [2] Kumar, Aviral, et al. "Conservative q-learning for offline reinforcement learning." Advances in Neural Information Processing Systems 33 (2020): 1179-1191.
- [3] Fujimoto, Scott, et al. "A minimalist approach to offline reinforcement learning." Advances in neural information processing systems 34 (2021): 20132-20145.
- [4] Wang, Zhendong, et al. "Diffusion policies as an expressive policy class for offline reinforcement learning." arXiv preprint arXiv:2208.06193 (2022).
- [5] Yang, Rui, et al. "Rorl: Robust offline reinforcement learning via conservative smoothing." Advances in neural information processing systems 35 (2022): 23851-23866.

Thanks for your listening!

