

Causality-Inspired Spatial-Temporal Explanations for Dynamic Graph Neural Networks

Kesen Zhao

City University of Hong Kong kesenzhao2-c@my.cityu.edu.hk

Liang Zhang

Shenzhen Research Institute of Big Datao zhangliang@sribd.cn

Background & Motivation

- Dynamic Graph Neural Networks (DyGNNs)
 - Spatial interpretability
 - Temporal interpretability

Background & Motivation

- Dynamic Graph Neural Networks (DyGNNs)
 - Spatial interpretability
 - Temporal interpretability
- DyGNNExplainer
 - Disentangle the trivial relationship and the causal relationship
 - Disentangle the dynamic relationship and the static relationship

A causal view on DyGNNs

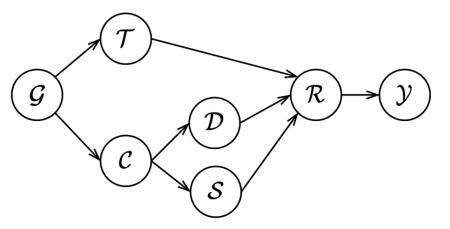
Backdoor path

Between causal and trivial

$$\mathcal{C} \leftarrow \mathcal{G} \rightarrow \mathcal{T} \rightarrow \mathcal{R} \rightarrow \mathcal{Y}$$

Between dynamic and static

$$\mathcal{D} \leftarrow \mathcal{C} \rightarrow \mathcal{S} \rightarrow \mathcal{R} \rightarrow \mathcal{Y}$$



 ${\cal G}$: graph data

 ${\cal C}$: causal factor

 ${\cal S}$: static factor

 ${\mathcal Y}$: prediction

 \mathcal{T} : trivial factor

 ${\mathcal D}$: dynamic factor

 \mathcal{R} : representation

A causal view on DyGNNs

Backdoor path

Between causal and trivial

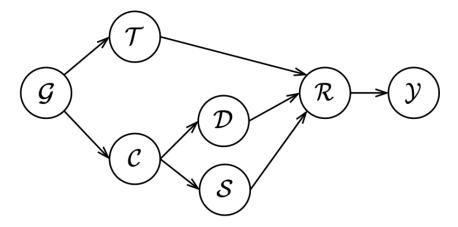
$$\mathcal{C} \leftarrow \mathcal{G} \rightarrow \mathcal{T} \rightarrow \mathcal{R} \rightarrow \mathcal{Y}$$

Between dynamic and static

$$\mathcal{D} \leftarrow \mathcal{C} \rightarrow \mathcal{S} \rightarrow \mathcal{R} \rightarrow \mathcal{Y}$$

Backdoor adjustment

$$\begin{split} P(\mathcal{Y}|do(\mathcal{D})) &= \sum P(\mathcal{Y}|do(\mathcal{D}), \mathcal{S}) P(\mathcal{S}|do(\mathcal{D})) \\ &= \sum P(\mathcal{Y}|do(\mathcal{C})) P(\mathcal{S}) \\ &= \sum P(\mathcal{S}) \sum P(\mathcal{Y}|do(\mathcal{C}), \mathcal{T}) P(\mathcal{T}|do(\mathcal{C})) \\ &= \sum P(\mathcal{S}) \sum P(\mathcal{Y}|\mathcal{G}) P(\mathcal{T}). \end{split}$$



 ${\cal G}$: graph data

 ${\cal C}$: causal factor

 ${\cal S}$: static factor

 ${\cal Y}$: prediction

 \mathcal{T} : trivial factor

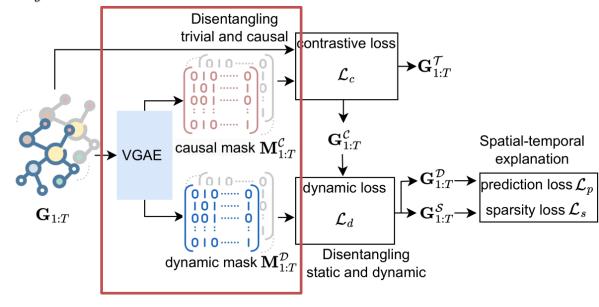
 \mathcal{D} : dynamic factor

 \mathcal{R} : representation

- Estimating soft mask
 - VGAE-based dynamic encoder-decoder

$$q(\mathbf{H}_{t} \mid \mathbf{G}_{1:t}) = \prod_{i=1}^{N} q(\mathbf{h}_{t,i} \mid \mathbf{G}_{1:t}), q(\mathbf{h}_{t,i} \mid \mathbf{G}_{1:t}) = \mathcal{N}\left(\mathbf{h}_{t,i} \mid \boldsymbol{\mu}_{t,i}, \operatorname{diag}\left(\boldsymbol{\sigma}_{t,i}^{2}\right)\right)$$

$$p(\mathbf{M}_{t}^{\mathcal{C}} \mid \mathbf{H}_{t}) = \prod_{i=1}^{N} \prod_{j=1}^{N} p\left(\mathbf{M}_{t,ij}^{\mathcal{C}} \mid \mathbf{h}_{t,i}, \mathbf{h}_{t,j}\right), p\left(\mathbf{M}_{t,ij}^{\mathcal{C}} = 1 \mid \mathbf{h}_{t,i}, \mathbf{h}_{t,j}\right) = g\left(\mathbf{h}_{t,i}, \mathbf{h}_{t,j}\right)$$



- Estimating soft mask
 - VGAE-based dynamic encoder-decoder
 - Casual, dynamic, static factor

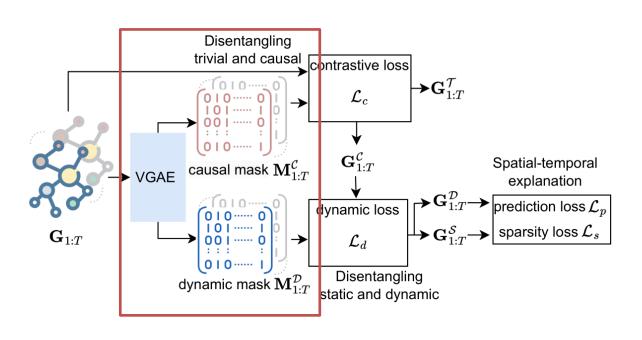
$$\mathbf{M}_{t}^{\mathcal{C}} = f_{v}\left(\mathbf{X}_{1:t}, \mathbf{A}_{1:t}; \Theta_{\mathcal{C}}\right) = p(\mathbf{M}_{t}^{\mathcal{C}} \mid \mathbf{H}_{t}) q(\mathbf{H}_{t} \mid \mathbf{G}_{1:t})$$

$$\mathbf{M}_{t}^{\mathcal{D}} = f_{v}\left(\mathbf{X}_{1:t}, \mathbf{A}_{1:t} \oplus \mathbf{M}_{1:t}^{\mathcal{C}}; \Theta_{\mathcal{D}}\right)$$

$$\mathbf{A}_{1:T}^{\mathcal{C}} = \mathbf{A}_{1:T} \oplus \mathbf{M}_{1:T}^{\mathcal{C}}$$

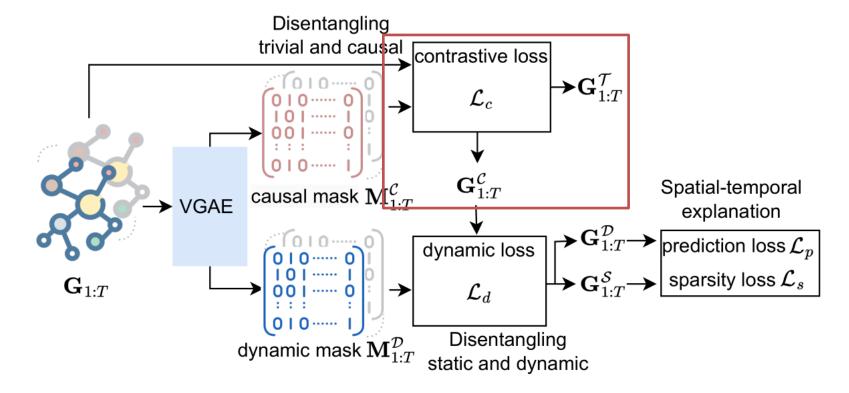
$$\mathbf{A}_{1:T}^{\mathcal{S}} = \mathbf{A}_{1:T} \oplus \mathbf{M}_{1:T}^{\mathcal{C}} \oplus \overline{\mathbf{M}}_{1:T}^{\mathcal{D}}$$

$$\mathbf{A}_{1:T}^{\mathcal{D}} = \mathbf{A}_{1:T} \oplus \mathbf{M}_{1:T}^{\mathcal{C}} \oplus \mathbf{M}_{1:T}^{\mathcal{D}}$$



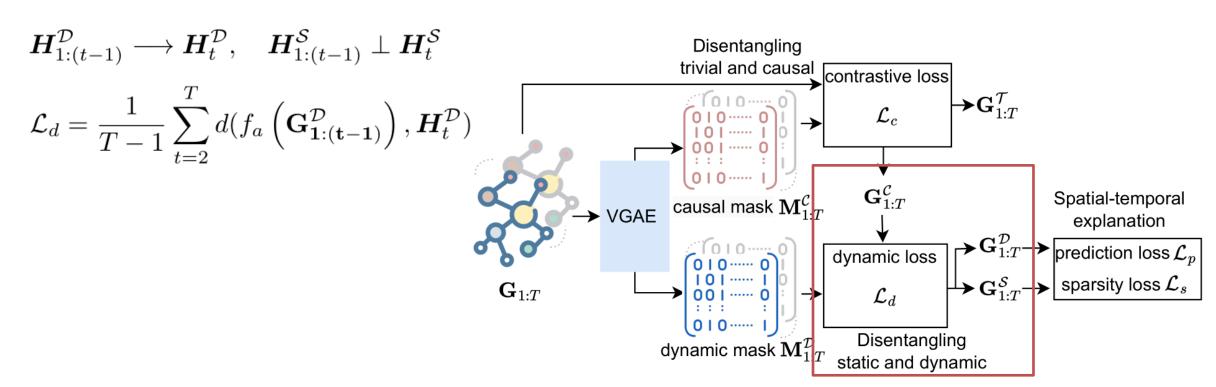
Disentangling trivial and causal

$$\mathcal{L}_{c} = \frac{1}{T} \sum_{t=1}^{T} \log \frac{\exp \left(s(\mathbf{e}_{t}, \mathbf{e}_{t}^{\mathcal{C}})/\tau\right)}{\exp \left(s(\mathbf{e}_{t}, \mathbf{e}_{t}^{\mathcal{C}})/\tau\right) + \alpha_{1} \exp \left(s(\mathbf{e}_{t}^{\mathcal{T}}, \mathbf{e}_{t}^{\mathcal{C}})/\tau\right) + \alpha_{2} \sum_{k \neq t} \exp \left(s(\mathbf{e}_{t}^{\mathcal{T}}, \mathbf{e}_{k}^{\mathcal{C}})/\tau\right)}$$



- Disentangling trivial and causal
- Disentangling static and dynamic

$$\boldsymbol{H}_{t}^{\mathcal{D}} = GCN(\boldsymbol{A}_{t}^{\mathcal{D}}, \boldsymbol{X}_{t}; \Psi_{\mathcal{D}}), \boldsymbol{H}_{t}^{\mathcal{S}} = GCN(\boldsymbol{A}_{t}^{\mathcal{S}}, \boldsymbol{X}_{t}; \Psi_{\mathcal{S}})$$



- Disentangling trivial and causal
- Disentangling static and dynamic
- Spatial-temporal explanation

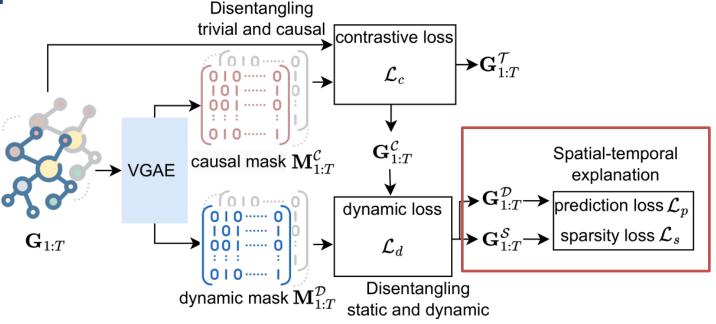
$$\Delta \boldsymbol{H}_{t}^{\mathcal{D}} = f_{a} \left(\mathbf{G}_{1:t}^{\mathcal{D}} \right) - f_{a} \left(\mathbf{G}_{1:(t-1)}^{\mathcal{D}} \right)$$

$$\boldsymbol{H}_{T} = \sum_{t=1}^{T} t_{p} (\Delta \boldsymbol{H}_{t}^{\mathcal{D}} \oplus \boldsymbol{H}_{t}^{\mathcal{S}}) \Delta \boldsymbol{H}_{t}^{\mathcal{D}} \oplus \boldsymbol{H}_{t}^{\mathcal{S}}$$

$$t_{p} (\mathbf{H}) = Softmax(\Psi_{\mathcal{P}} \mathbf{H} / \|\Psi_{\mathcal{P}}\|)$$

$$\mathcal{L}_{p} = l(f_{d}(\boldsymbol{H}_{T}), \mathcal{Y}))$$

$$\mathcal{L}_{s} = \sum_{t=1}^{T} \frac{\|\mathbf{A}_{t}^{\mathcal{C}}\|_{1} + \|\mathbf{A}_{t}^{\mathcal{D}}\|_{1}}{\|\mathbf{A}_{t}\|_{1}}$$



Explanation fidelity

Table 2: Explanation accuracy of different models (%). Where best performances are bold.

	1	•	` '			
Task	Dataset	GNNExplainer	PGExplainer	Gem	OrphicX	DyGNNExplainer
Node cls.	DBA-Shapes DTree-Cycles DTree-Grid Elliptic	92.1 92.8 85.2 92.4	92.9 93.7 85.9 94.1	93.6 94.4 87.1 94.6	94.3 96 90.5 96.1	97.8* 98.2* 94.2* 98.7*
Graph cls.	DBA-2motifs MemeTracker	86.5 88.2	88.0 89.2	90.7 91.0	91.4 91.9	96.3* 97.4*
*						

[&]quot;" indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline. 'cls.' is short for classification.

Observations

DyGNNExplainer surpasses all other baselines

Explanation fidelity

Table 2: Explanation accuracy of different models (%). Where best performances are bold.

Task Dataset GNNExplainer PGExplainer Gem OrphicX DyGNNExplainer Node cls. DBA-Shapes DTree-Cycles DTree-Cycles DTree-Grid Elliptic 92.8 93.7 94.4 96 96.1 98.2* 93.6 94.3 94.4 96 96.2 94.4 96 98.2* DTree-Grid Elliptic 85.2 85.9 87.1 90.5 94.2* 90.5 94.2* 94.6 96.1 98.7* Graph cls. DBA-2motifs MemeTracker 86.5 88.0 90.7 91.4 91.0 91.9 97.4* 96.3* 97.4*		•	•	, ,			
Node cls. DTree-Cycles 92.8 93.7 94.4 96 98.2* DTree-Grid 85.2 85.9 87.1 90.5 94.2* Elliptic 92.4 94.1 94.6 96.1 98.7* Graph cls DBA-2motifs 86.5 88.0 90.7 91.4 96.3*	Task	Dataset	GNNExplainer	PGExplainer	Gem	OrphicX	DyGNNExplainer
(iranh cls	Node cls.	DTree-Cycles DTree-Grid	92.8 85.2	93.7 85.9	94.4 87.1	96 90.5	98.2* 94.2*
٠١٠							

[&]quot;*" indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline. 'cls.' is short for classification.

Observations

 Causal-based methods OrphicX and Gem also outperform other baselines

Explanation interpretability analysis

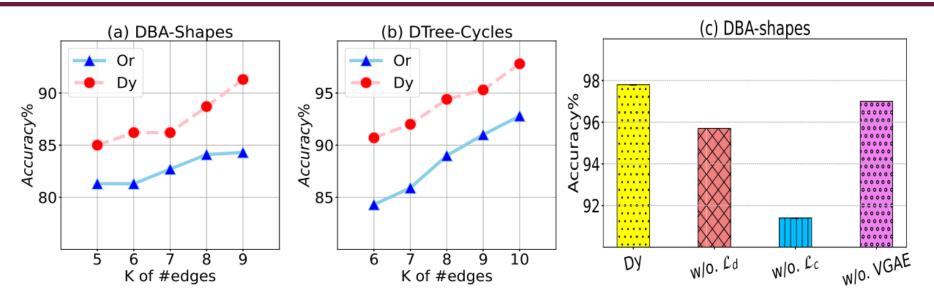


Figure 2: Interpretability analysis and ablation study. (a) Sparsity analysis on DBA-Shapes dataset (b) Sparsity analysis on DTree-Cycles dataset. (c) Ablation study on DBA-shapes. K is the edge number of each explanation subgraph. 'Or' is the OrphicX model, and 'Dy' is our DyGNNExplainer. 'w/o. \mathcal{L}_d ', 'w/o. \mathcal{L}_c ', and 'w/o. VGAE' are DyGNNExplainer without dynamic loss, contrastive loss, and VGAE, respectively.

Sparsity

DyGNNExplainer outperforms OrphicX with fewer edges in the subgraphs.

Conclusion

DyGNNExplainer has addressed the critical challenges associated with interpretability

in Dynamic Graph Neural Networks:

- Pioneering the development of DyGNN explanation
- Generating synthetic dynamic datasets tailored for dynamic graph interpretability tasks
- Demonstrating the superior performance of DyGNNExplainer in both explanation tasks and real predictions

kesenzhao2-c@my.cityu.edu.hk

