IpNTK: Better Generalisation with Less Data via Sample Interaction During Learning

Shangmin Guo, Yi Ren, Stefano V. Albrecht, Kenny Smith

April 22, 2024

IpNTK: Sample Relationship through Learning Dynamics

Samples having Similar Learning Effects Intuition

Samples having Similar Learning Effects Intuition

Question: how to find out the samples having similar learning effects in DL? Answer: a novel lpNTK derived via first-Order Taylor approximation to sample interaction, i.e. how learning \mathbf{x}_0 changes the prediction on \mathbf{x}_0

Formal Definition of IpNTK

labelled pseudo neural tangent kernel (lpNTK)

$$\kappa((\mathbf{x}_{o}, \mathbf{y}_{o}), (\mathbf{x}_{u}, \mathbf{y}_{u})) \triangleq \frac{1}{K} \sum_{\mathbf{x}} \left[\mathbf{s}(\mathbf{y}_{u}) \cdot \mathbf{s}(\mathbf{y}_{o})^{\mathsf{T}} \right] \odot \mathbf{K}(\mathbf{x}_{o}, \mathbf{x}_{u})$$

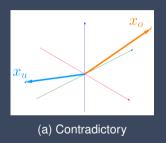
$$= \underbrace{\left[\frac{1}{\sqrt{K}} \mathbf{s}(\mathbf{y}_{o})^{\mathsf{T}} \nabla_{\mathbf{w}} \mathbf{z}(\mathbf{x}_{o}) \right]}_{1 \times d} \cdot \underbrace{\left[\nabla_{\mathbf{w}} \mathbf{z}(\mathbf{x}_{u})^{\mathsf{T}} \mathbf{s}(\mathbf{y}_{u}) \frac{1}{\sqrt{K}} \right]}_{d \times 1} \tag{1}$$

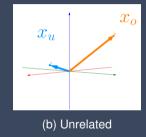
Feature representation of (x, y) under IpNTK:

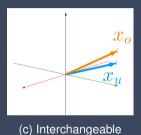
$$\frac{1}{\sqrt{K}} \mathbf{s}(y)^\mathsf{T} \nabla_{\mathbf{w}} \mathbf{z}(\mathbf{x}) \rightarrow \text{ a } 1 \times d \text{ vector!}$$

Sample Relationships under IpNTK Feature Representation

(x, y) corresponds to a vector in the gradient space





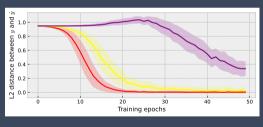


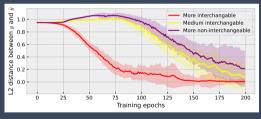
- Interchangeable: $x_u \uparrow \lor x_o \uparrow \Rightarrow x_u \uparrow \land x_o \uparrow$
- Unrelated: $x_u \uparrow \Rightarrow \overline{x_0} \land x_0 \uparrow \Rightarrow x_u$
- Contradictory: $x_u \uparrow \Rightarrow x_o \downarrow \land x_o \uparrow \Rightarrow x_u \downarrow$

Use Case 1: Control Learning Difficulty

For a given target sample:

- ullet More interchangeable o easier to learn
- More contradictory → harder to learn
- More unrelated → between the above two cases





(a) on MNIST

(b) on CIFAR-10

Use Case 2: Predict Forgetting Events during Learning

Predict forgetting events with IpNTK:

Benchmarks	Precision		Recall		F1-score	
	Mean	Std	Mean	Std	Mean	Std
MNIST	42.72%	$\pm 6.55\%$	59.02%	$\pm 7.49\%$	49.54%	$\pm 6.99\%$
CIFAR-10	49.47%	$\pm 7.06\%$	69.50%	$\pm 7.49\%$	57.76%	$\pm 7.36\%$

Predict forgetting events with **eNTK**:

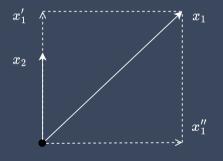
Datasets	Precision		Recall		F1-score	
	Mean	Std	Mean	Std	Mean	Std
MNIST	95.56%	$\pm 8.14\%$	86.67%	$\pm 13.67\%$	89.96%	$\pm 7.10\%$
CIFAR-10	96.99%	$\pm 3.99\%$	98.99%	$\pm 1.61\%$	97.87%	$\pm 2.08\%$

Use Case 3: Improve Generalisation Performance in Image Classification

Outline

- Do we really need all those interchangeable samples for good generalisation?
- Can we improve the generalisation performance by removing the bias in the data towards the numerous interchangeable samples?

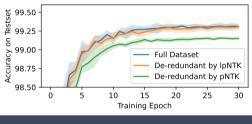
Redundant Samples

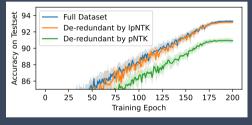


Formal Definition

For a labelled sample (x, y), if there exists another labelled sample (x', y') where $x' \neq x$ such that $\kappa((x, y), (x', y')) > \kappa((x, y), (x, y))$, then (x, y) is considered as a redundant sample.

Experiments on Removing Redundant Samples



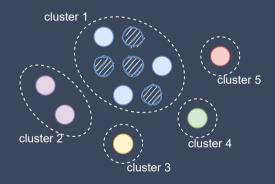


(a) MNIST

(b) CIFAR-10

Poisoning Samples

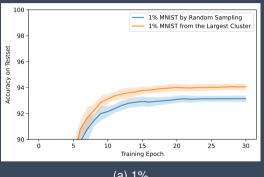
For a given set of samples \mathbb{T} , if performance trained on $\tilde{\mathbb{T}} > \mathbb{T}$ (where $\tilde{\mathbb{T}} \subset \mathbb{T}$), $\mathbb{T} \setminus \tilde{\mathbb{T}}$ are considered as poisoning samples.

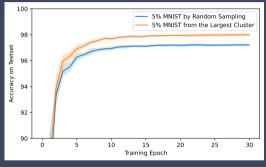


Experiment Results on Pruning Image Training Sets

Benchmarks	Full	lpNTK	EL2N	GraNd	Forgot Score
MNIST	99.31(±0.03)%	99.37(±0.04)%	99.33(±0.06)%	99.28(±0.05)%	99.26(±0.06)%
CIFAR10	$93.28(\pm0.06)\%$	93.55(±0.12)%	$93.32(\pm0.07)\%$	92.87(±0.13)%	$92.64(\pm0.22)$ %

Side Point: Remove Small Clusters when #Samples is Small





(a) 1%

(b) 5%

Thank You!