

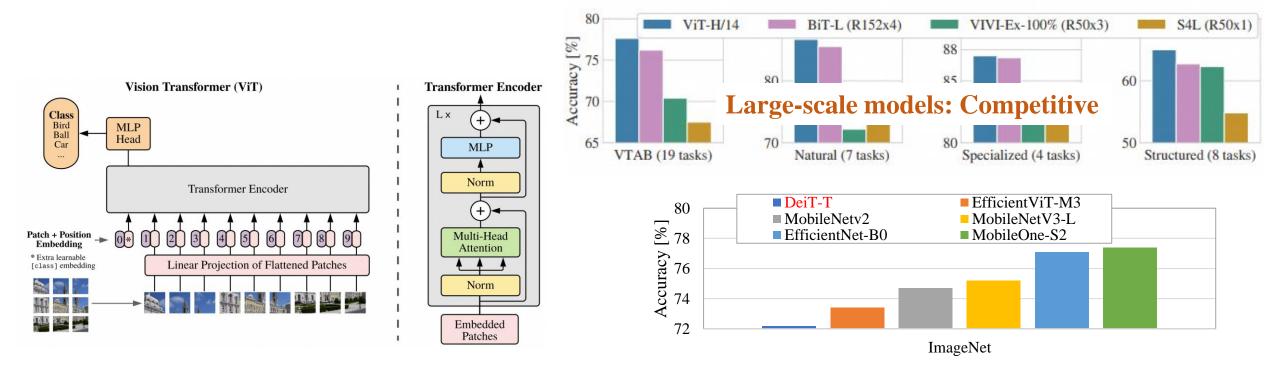
Boosting Vanilla Lightweight Vision Transformers via Re-parameterization

Alibaba Cloud¹, Alibaba Group²,
University of Science and Technology of China³,
East China Normal University⁴,

Zhentao Tan^{1,3}, Xiaodan Lin^{4,2}, Yue Wu¹, Qi Chu³, Le Lu², Nenghai Yu³, Jieping Ye¹

Background: ViTs

Performance difference between large-scale and lightweight vanilla vision Transformers.

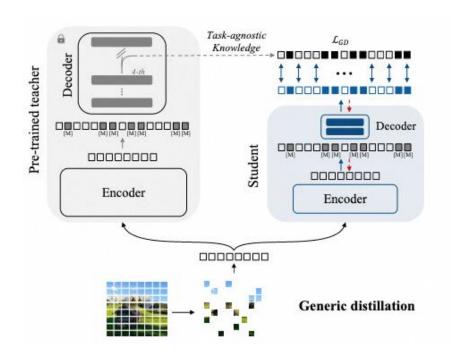


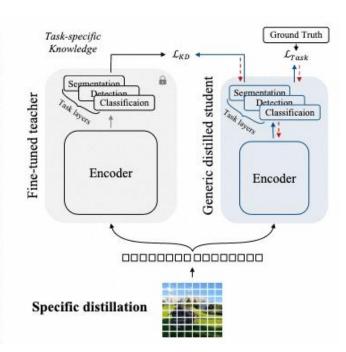
Lightweight models: Unsatisfactory

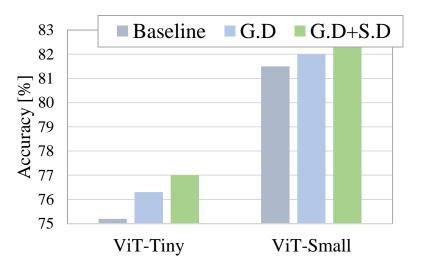
Background: Distillation

How can we improve the performance of vanilla lightweight ViTs without any inference pipeline changes?

Related works: Knowledge Distillation



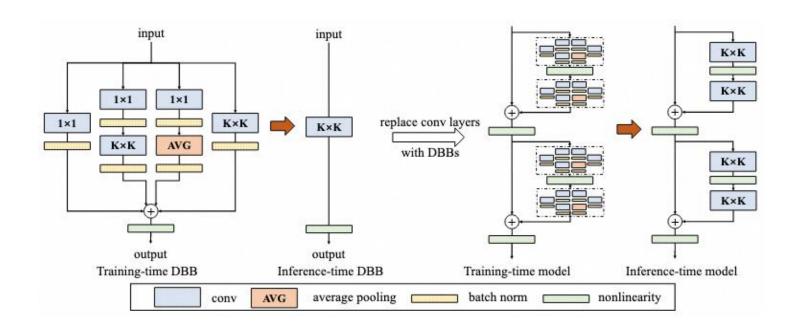




Costs of pre-trained teachers (especially for S.D)

Background: Re-parameterization

Structure re-parameterization in CNNs

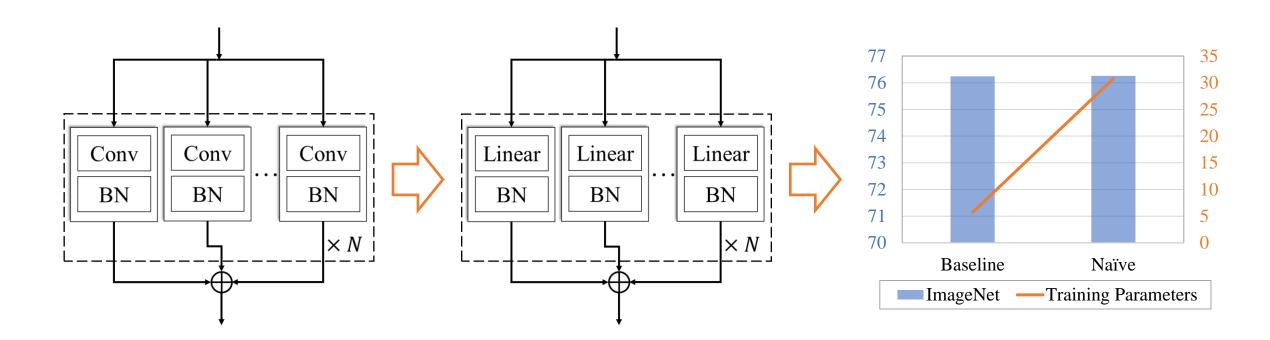


- Training:
 - multi-branch
 - over parameterization
- Inference:
 - single KxK convolution

Can we apply re-parameterization to vanilla ViTs?

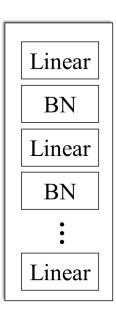
Method: Single Experiments

Single application: directly replacing convolution layers into linear layers.



Method: Linear Ensemble

Stacking linear layers with batch normalization in-between them.



- Effectiveness: similar to MLP which is appropriate to transformers and plays an important role to represent rich intra-token information.
- Rationality: batch normalization is still can be used in-between layers while keeping original layer normalization unchanged.
- Operability: it can be fused to a single linear layer after training.
- 1. Merging linear and batch normalization

$$oldsymbol{W}_{i,:}^{'} = rac{\gamma_{i}}{\sigma_{i}} oldsymbol{W}_{i,:} \quad b_{i}^{'} = rac{(b_{i} - \mu_{i})\gamma_{i}}{\sigma_{i}} + eta_{i},$$

2. Merging two adjacent linear layers

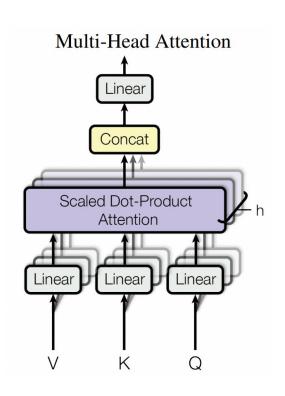
$$W'_{i,j}(l+1,l) = \sum_{k=1}^{k=C_l} W_{i,k}^{l+1} W_{k,j}^{l},$$

$$b'_i(l+1,l) = \sum_{k=1}^{C_l} b_k^l W_{i,k}^{l+1} + b_i^{l+1},$$

Method: Distribution Rectification

Multi-branch re-parameterization will change the feature distribution.

Attention mechanism in vision transformers is sensitive to this distribution changes.



Normal Attention Operation:

$$Attention(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = softmax(\frac{A}{\sqrt{C_k}})\mathbf{V}, \quad \mathbf{A} = \mathbf{Q}\mathbf{K}^T.$$

$$A_{i,j} = \sum_{k=1}^{k=C_k} Q_{i,k} K_{k,j} \quad \underline{\text{Variance scales to } C_k}$$

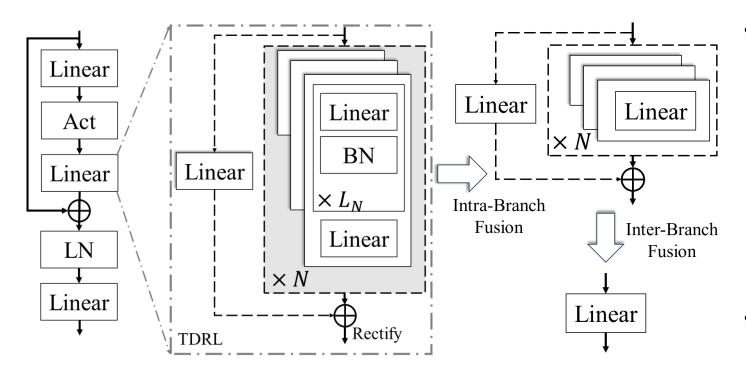
Re-parameterization Attention Operation:

$$A'_{i,j} = \sum_{k=1}^{k=C_k} (\sum_{n=1}^{N_Q} Q_{i,k}^n) (\sum_{m=1}^{N_K} K_{k,j}^m) = \sum_{k=1}^{k=C_k} \sum_{n=1}^{N_Q} \sum_{m=1}^{N_K} Q_{i,k}^n K_{k,j}^m.$$

$$R(x) = \begin{cases} BN(x), QKV \\ \frac{x}{\sqrt{C_k N_Q N_K}}, others \end{cases}$$
 Variance scales to $C_k N_Q N_K$

Method: Structure

TDRL: Pyramid-wise Multi-branch

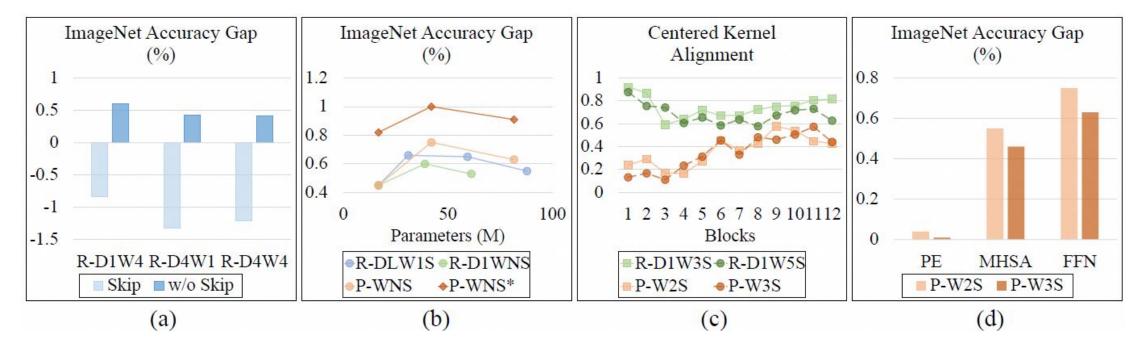


$$Y = Rectify(Linear(X) + \sum_{n=1}^{N} f_{n,L_n}(X)), \quad L_n = n,$$

- Design:
 - Skip-branch
 - Rep-branch
 - Length: representation ability
 - Width: representation diversity
- Application:
 - Arbitrary linear layers

Experiments: Ablations

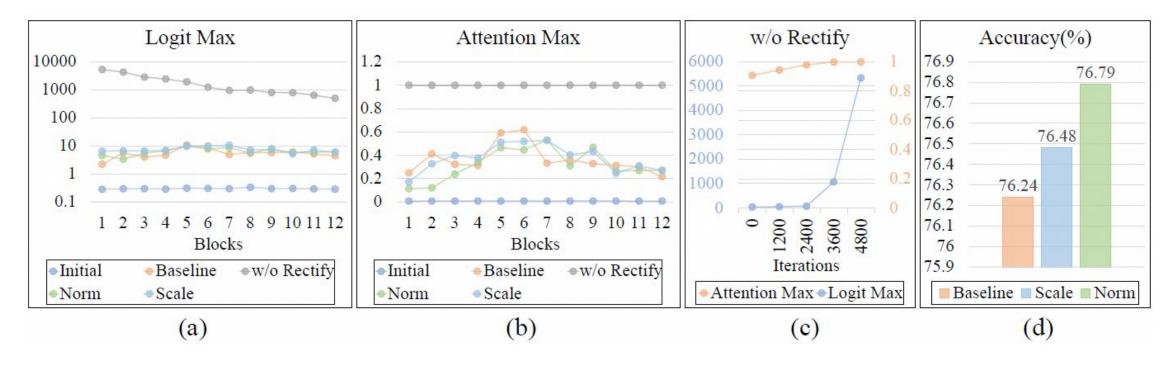
> Structure Designs



- Skip connection plays an important role.
- More branches do not always lead to better performance.
- Pyramid-wise design leads to diversity representation between different branches.
- Applying TDRL to MHSA and FFN results in much more improvements.

Experiments: Ablations

> Attention Distribution Rectification



- Without rectification, the maximum value in attention is prone to extreme values.
- Normalization is better than scaling as a rectification function.

Experiments: Classification

Method	Network	Teacher	FT	P(M)	Acc(%)	
Without Pre-training						
MobileNet-v3 (Howard et al., 2019)	CNNs	N/A	600	6	75.2	
ConvNeXt-V1-F (Liu et al., 2022b)	CNNs	N/A	600	5	77.5	
VanillaNet-5 (Chen et al., 2023)	CNNs	N/A	300	15.5	72.5	
MobileViT-S (Mehta & Rastegari, 2021)	Hybrid	N/A	300	6	78.3	
EfficientViT-M3 (Liu et al., 2023)	Hybrid	N/A	300	7	73.4	
DeiT-Ti (Touvron et al., 2021)	ViTs	N/A	300	5	72.2	
Manifold-Ti (Jia et al., 2021)	ViTs	CaiT-S24	-	6	75.1†	
MKD-Ti (Liu et al., 2022a)	ViTs	CaiT-S24	300	6	76.4†	
DeiT-Ti (Touvron et al., 2021)	ViTs	RegNetY	300	6	74.5†	
SSTA-Ti (Wu et al., 2022a)	ViTs	DeiT-S	300	6	75.2†	
ImageNet Pre-training						
DMAE-Ti (Bai et al., 2023)	ViTs	ViT-B	100	6	74.9	
MAE-Lite (Wang et al., 2023)	ViTs	N/A	100	6	76.2	
MAE-Ti (He et al., 2022)	ViTs	N/A	200	6	75.2	
TinyMIM-Ti (Ren et al., 2023)	ViTs	TinyMIM-S	200	6	75.8	
G2SD-Ti w/o S.D (Huang et al., 2023)	ViTs	ViT-B	200	6	76.3	
G2SD-Ti (Huang et al., 2023)	ViTs	ViT-B	200	6	77.0†	
TDRL (ours)	ViTs	ViT-B	200	6	78.3/78.6†	
MAE-Lite (Wang et al., 2023)	ViTs	N/A	300	6	78.0	
D-MAE-Lite (Wang et al., 2023)	ViTs	ViT-B	300	6	78.4	
TDRL (ours)	ViTs	ViT-B	300	6	78.7/79.1 †	

- TDRL achieves the best image classification accuracy under various epoch settings.
- When performing distillation during fine-tuning, the performance of TDRL can be further improved to 79.1%.

[†]means performing distillation during fine-tuning.

Experiments: Dense Prediction

Method	#Params (M)	Segmentation	Dete	ction
Method	Seg/Det	mIoU	AP^{bbox}	AP^{mask}
Swin-T (Liu et al., 2021)	59.9/47.8	44.5	46.0‡	41.6‡
ConvNeXt-T (Liu et al., 2022b)	60.0/48.1	46.0	46.2‡	41.7‡
DINO-S (Caron et al., 2021)	42.0/44.5	44.0	49.1	43.3
iBOT-S (Zhou et al., 2021)	42.0/44.5	45.4	49.7	44.0
MAE-S (He et al., 2022)	42.0/44.5	41.1/44.9†	45.3	40.8
MAE-Ti (He et al., 2022)	11.0/27.7	36.9/42.0†	37.9/43.5†	34.9/39.0†
MAE-Lite (Wang et al., 2023)	11.0/27.7	37.6	39.9*	35.4*
D-MAE-Lite (Wang et al., 2023)	11.0/27.7	42.0	42.3*	37.4*
G2SD-Ti (Huang et al., 2023)	11.0/27.7	41.4/44.5†	44.0/46.3†	39.6/41.3†
TDRL (ours)	11.0/27.7	42.5/45.2†	46.5/47.4†	41.5/42.1†

• TDRL can also benefit dense prediction tasks such as semantic segmentation and object detection.

Experiments: Generality

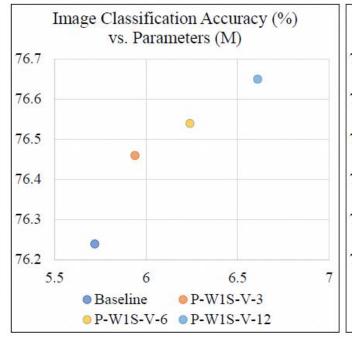
TDRL	RL Classification Accuracy (%) ↑ ViT-Small Swin-Ti Mobileone-S0 VanillaNet-5			Image Generation FID ↓ DDPM	
× √	80.8	76.2	71.3	71.1	10.4
	81.3 (+0.5)	78.2 (+2.0)	75.1 (+3.8)	71.5 (+0.4)	9.2 (+1.2)

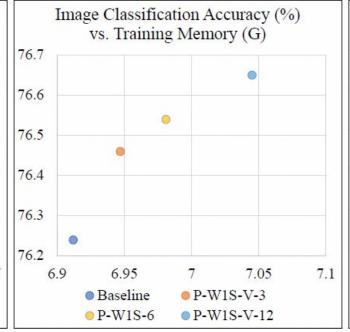
- TDRL can be used in various networks and tasks:
 - Larger model (e.g., ViT-Small, Swin-Tiny)
 - CNN model (e.g., VanillaNet)
 - Hybrid model (e.g., MobileOne)
 - DDPM

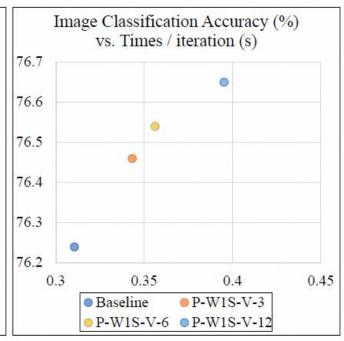
Experiments: Efficiency

Method	Pre-train time (hours)	Pre-train epoch	Fine-tune epoch	Accuracy (%)
Baseline (G2SD)	32.33	300	100	76.24
TDRL (ours)	32.02	220	100	76.73 (+0.59)

Under similar training costs, TDRL can still improve the performance of ViT-Tiny.







Summary

- We propose a novel re-parameterization method, namely TDRL, to improve the performance of vanilla lightweight Vision Transformers.
- To improve the representation ability, we design a linear ensemble way and a pyramid-wise multi-branch structure.
- For stable training, we analyze the feature distribution change issues and propose a simple rectification method.
- Experiments on various tasks and backbone have demonstrated the effectiveness of our TDRL.

Thanks

