

Refer and Ground Anything Anywhere at Any Granularity

Haoxuan You^{1*}, Haotian Zhang^{2*} [*equal contribution]
Zhe Gan², Xianzhi Du², Bowen Zhang², Zirui Wang², Liangliang Cao², Shih-Fu Chang², Yinfei Yang²

¹Columbia University & ²Apple Al/ML

Is GPT-4V/Bard perfect?

Observation: They are powerful in understanding global image semantic, but struggle with **Spatial&Regional Understanding**.

Why is **MLLM + Spatial Understanding** important?

Why is MLLM + Spatial Understanding important?

New Functions:

- 1. Users to refer to specific regions/objects and ask model's help.
- 2. Model to localize/ground particular objects in response for better helping users.

Better Model:

- 1. Less Hallucination
- 2. More Trustworthy
- 3. Open-Vocabulary Concept Grounding

New Applications:

- Phone/VR/AR Assistant
- 2. Robotics
- Medical Assistant
- 4. ...

Building Ferret, a MLLM w/ Strong Spatial Understand

- Problem Definition
- Model Structure
- Data Collection
- Evaluation (Ferret-Bench) and Ablation

Problem Definition

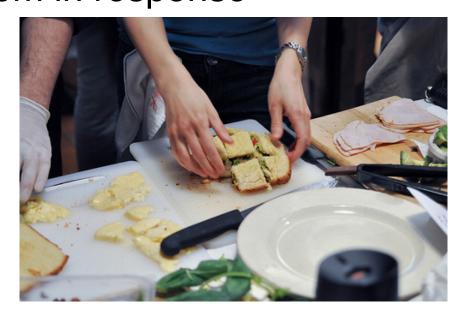
Spatial Understanding can be reflected in two types of tasks:

1. Referring

Input: Image + Text Instruction + Region Model is required to understand the referred regions and respond to the instruction.

Q: What is in **region0**? What is it used for?

Q: Which movie characters are in **region1** and **region2**? And what is their relationship?


Problem Definition

Spatial Understanding can be reflected in two types of tasks:

2. Grounding

Output: Text Response + Region

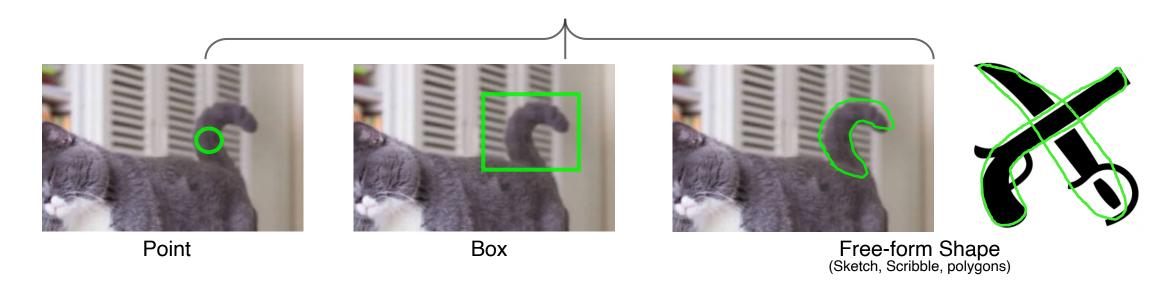
Model is required to localize the objects in image when mentioning them in response

Q: How to make a sandwich with available ingredients in the image? And where are they?

Region Definition

Region in Input:

- Point
- Box
- Free-Form Shape: Scribble, Segmentation Mask, ...


Hybrid Region Representation

Region in Output:

- Box → Coordinates
- Free-Form Shape

Hybrid Region Representation

Region Name + Discrete Coordinate + Continuous Feature

Hybrid Region Representation

Discrete Coordinates

- Point: [x, y] (center point)
 Box and Free-form Shape: [x1, y1, x2, y2] (top-left and bottom-right points)
- Tokenize them by LLM tokenizer.

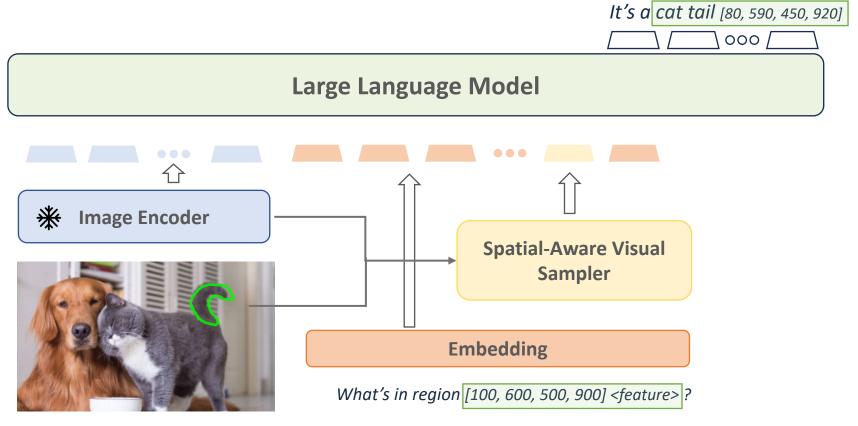
Continuous Visual Features.

Introduce a Visual Sampler module to extract and summarize visual features
of referred regions (point -> circle) into a single feature vector.

Examples of data:

Input:

What is in region [100, 600, 500, 900] <feature>?


Output:

It's a box of egg [100, 600, 500, 900].

Ferret Model Structure

- Model:
 - Image Encoder: CLIP-ViT-L/14
 - LLM: Vicuna-V1.3
 - Proposed Spatial-Aware Visual Sampler

- Optimization:
 - Next Token Prediction.
 - Fix Image Encoder, Update Others.

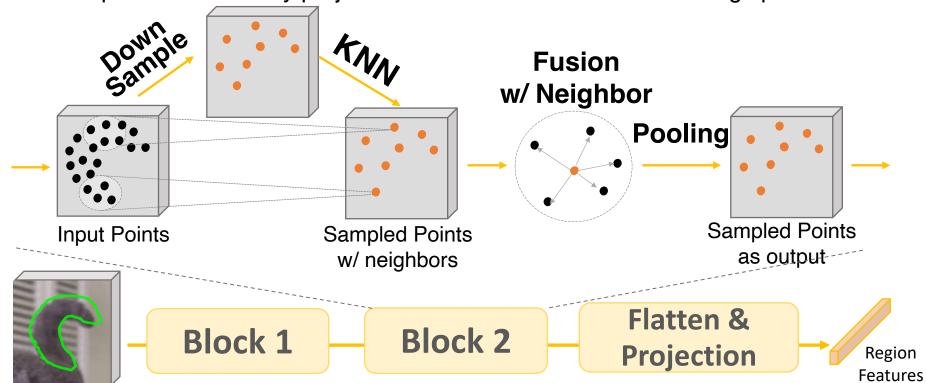
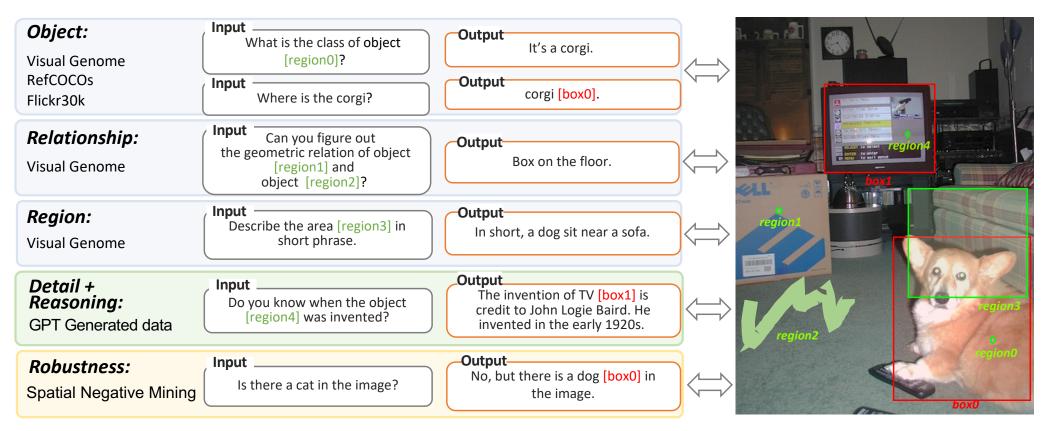


Image Input

Text w/ references

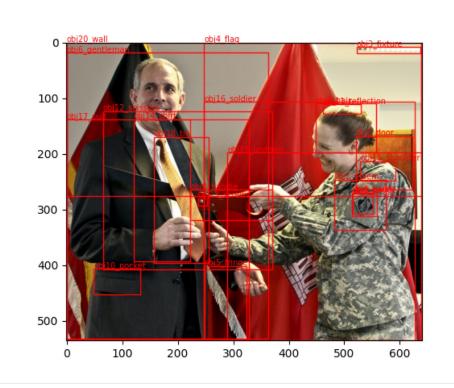

Spatial-aware Visual Sampler

- Sample 512 points inside the region from feature maps.
- · Go through 2 blocks. Inside each one,
 - Down-sample the number of points.
 - Find K-Nearest Neighbors
 - Fuse neighbor features and then pooling
- Flatten final 32 points and linearly project their features to LLM's embedding space.

GRIT: A Ground-and-Refer Instruction-Tuning Dataset

- Hierarchical; Unified Format, Instruction-Following; Robust.
- Dataset Size: 1.1M

Data Collection - GPT-Assisted Instructions


Two types of generated data: Single-round and Multi-round Conversations.

- Source Data:
 - Overlap of VG dataset and MSCOCO
 - Visual Contexts:
 - Object, Relationships, Region Descriptions from VG annotation.
 - Global Captions from MSCOCO annotation.
- Details of GPT few-shot prompting
 - Each few-shot examples has its visual context and human written conversation.
 - 3 few-shot examples for each type of data.
 - Generate-then-Revise:
 - Use ChatGPT to generate new conversations
 - Use GPT4 to revise the generated conversations.
- Additionally, we apply GLIPv2 to LLaVA's instruction data to ground the objects in their responses. And append the location after the corresponding objects.

Total Data: 34k + 158k

Data Collection - GPT-Assisted Instructions

A few-shot Example:

Context:

```
Object 0 : badge at [0.802, 0.505, 0.872, 0.581].
Object 1: door at [0.814, 0.313, 0.972, 0.493].
 Object 2: eblem at [0.752, 0.459, 0.898, 0.629].
 Object 3: fixture at [0.816, 0.014, 0.996, 0.036].
 Object 4: flag at [0.386, 0.000, 0.998, 0.998].
Object 5 : fringe at [0.388, 0.749, 0.506, 1.000].
Object 6 : gentleman at [0.000, 0.033, 0.568, 0.993].
Object 7: hair at [0.700, 0.203, 0.870, 0.368].
Object 8: handle at [0.348, 0.493, 0.578, 0.596].
Object 9: patch at [0.804, 0.502, 0.862, 0.574].
Object 10: pocket at [0.076, 0.758, 0.208, 0.844].
Object 11 : reflection at [0.722, 0.206, 0.828, 0.239].
Object 12 : scissors at [0.102, 0.230, 0.578, 0.761].
 Object 13: screws at [0.370, 0.522, 0.396, 0.545].
Object 14: shirt at [0.188, 0.256, 0.348, 0.734].
Object 15: shoulder at [0.826, 0.397, 0.926, 0.464].
 Object 16: soldier at [0.386, 0.199, 0.980, 1.000].
Object 17: suit at [0.000, 0.258, 0.512, 0.995].
Object 18: tie at [0.246, 0.316, 0.400, 0.739].
Object 19: uniform at [0.452, 0.368, 1.000, 0.998].
 Object 20: wall at [0.000, 0.000, 0.998, 0.514].
 object 5 : fringe -> on -> object 4 : flag.
object 2 : eblem -> on -> object 9 : patch.
 object 11 : reflection -> on -> object 7 : hair.
 object 0 : badge -> on -> object 15 : shoulder.
 object 10 : pocket -> on -> object 17 : suit.
 Region Description:
 Region Description at [0.038, 0.029, 0.508, 0.995] : A Grinning gentleman about to get his tie cut.
 Region Description at [0.864, 0.297, 0.980, 0.426]: Possible wooden door in the background.
a female in military uniform cutting a businessman's neck tie
A woman in a soldier's uniform pretends to cut the tie of a man using an enormous pair of scissors.
A funny picture of a woman holding a large pair of scissors attempting to cut a mans tie.
 A woman soldier holding up a pair of giant scissors to someone's tie.
 A man in a suit and a woman in military clothes.
```

Annotation:

Question:

What is unusual about the region in [0.102, 0.230, 0.578, 0.761]?

===

Answer:

In the specified region, there is an intriguing sight: a pair of oversized scissors positioned near a man's tie, accompanied by a woman in military attire. The two of them share a hearty laugh, creating an unexpected contrast. The atmosphere appears celebratory, resembling a ribbon-cutting ceremony with flags in the background. However, rather than cutting a ribbon, the scissors are directed toward the man's tie, adding an unexpected twist to the situation.

Evaluation:

- Conventional Abilities:
 - Referring
 - Grounding
 - LLaVA
- Ferret-Bench: A new benchmark to evaluate tasks jointly requiring referring/grounding, semantics, knowledge, and reasoning.
- Object Hallucination

Evaluation – Ferret-Bench

A new benchmark to evaluate tasks jointly requiring referring/grounding, semantics, knowledge, and reasoning.

- Three New Tasks:
 - Referring Description: Describe a referred region based on its interaction with surrounding objects.
 - Referring Reasoning: Reason on top of one or more referred regions correctly
 - **Grounding in Conversation**: Reason correctly and accurately ground/localize the objects/regions necessary for the reasoning.
- Each task have 40 annotations, generated by GPT-4 in a similar way to preparing GPT-Assisted Data in GRIT, verified by human.
- Evaluated by GPT-4.

Evaluation – Ferret-Bench

An Example:

Quantitative Comparison:

	Ferret-Bench					
	Referring Description	Referring Reasoning	Grounding in Conversation	Avg.		
LLaVA ⁸	41.4	31.7	28.8	34.0		
Kosmos-2 Shikra-7B Ferret-7B Ferret-13B	51.8 46.0 68.7 70.6	33.7 41.6 67.3 68.7	48.4 50.1 57.5 59.7	44.6 45.9 64.5 66.3		

Question:

What is the purpose of the object [region0]?

Ground Truth:

The object is a bottle. Bottles are typically used to hold and store different types of liquids. In this context, it might be used to store a beverage for the meal.

LLaVA:

A knife and a fork, indicating that it is ready for a meal.

Kosmos-2:

The purpose of the object is to attract the birds to the table.

Shikra:

The answer is keep birds away.

Ferret (Ours):

The object is a bottle, generally used to store and dispense liquids like water, juice, or other beverages.

Ablation – Mutual Benefit of Referring and Grounding

Ablation study on the mutual benefit of grounding data and referring data.

Model	Referring (LVIS) Grounding			
	Point	Box	Flickr30k	
Ferret	67.9	79.4	80.4	
w/o Grounding data	65.4	75.6	×	
w/o Referring data	X	×	79.8	

Ablation – Spatial-aware Visual Sampler

Ablation study on the effectiveness of the proposed spatial-aware visual sampler.

Module	Referring (LVIS)		
	Point	Box	Free-form
Spatial-aware Visual Sampler	67.9	79.4	69.8
Visual Sampler in SEEM	67.1	77.2	68.9