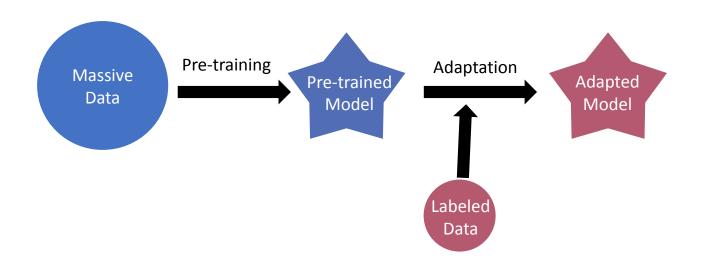
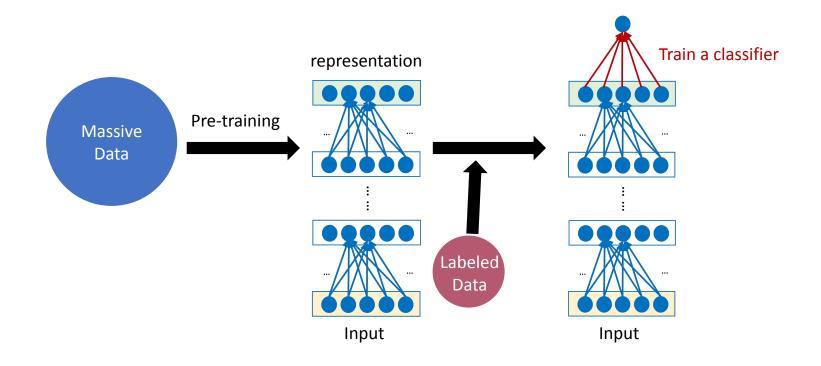


Towards Few-Shot Adaptation of Foundation Models via Multitask Finetuning


Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, Yingyu Liang
University of Wisconsin - Madison



New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning ⇒ pre-training + adaptation

New Paradigm: Pre-trained Representations

New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning → pre-training + adaptation

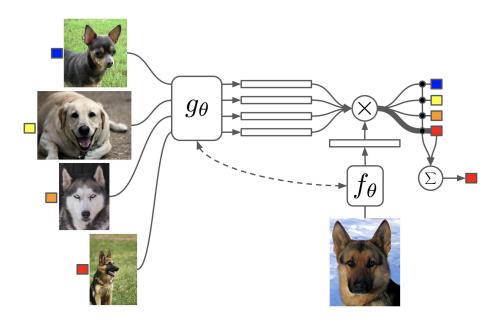
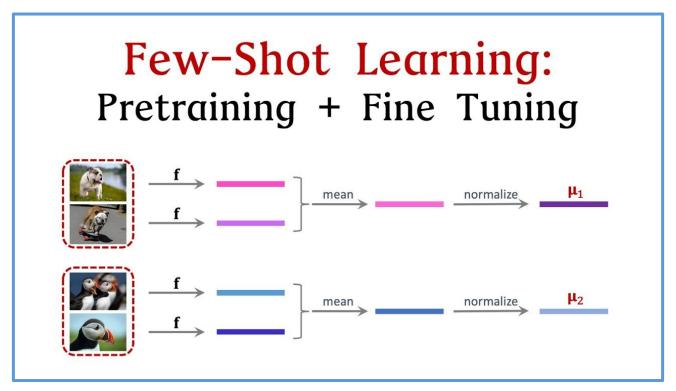



Figure 1: Matching Networks architecture

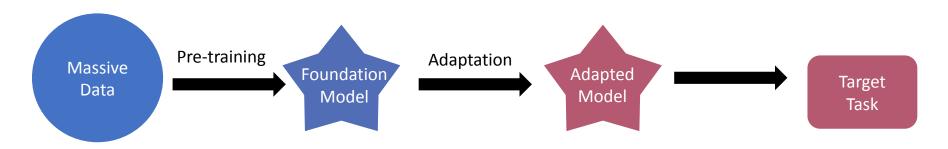
Adaptation of a pre-trained image encoder

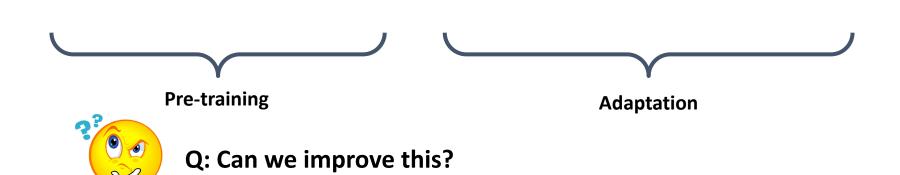
Figures from: Matching Networks for One Shot Learning, 2017.


Intro - Foundation Model

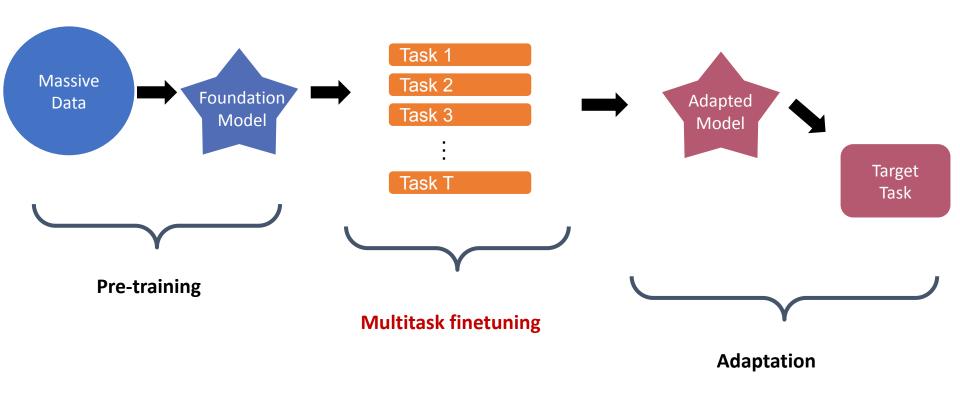
The history and evolution of foundation models

Figures from: A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT, 2023.


Intro - Foundation Model



Label Efficiency


Figures from: https://www.youtube.com/watch?v=U6uFOIURcD0&ab channel=ShusenWang, 2020

Paradigm: Pre-training + Adaptation

Pre-training + Finetuning + Adaptation

Training cats birds Test dataset: "dog-otter" Train dataset #2: "flower-bike" otters flowers

An example of 4-shot 2-class image classification

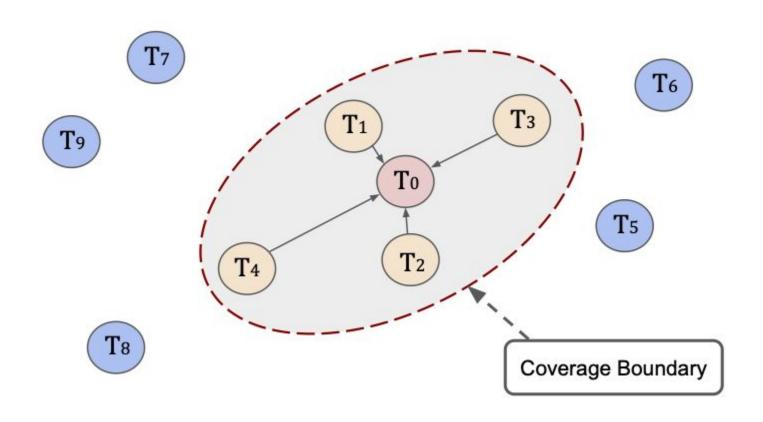
Testing

Figures from: Meta-Learning: Learning to Learn Fast, 2018.

Diversity and Consistency

Definition 1 (Diversity and Consistency (Informal))

Consider the latent feature space of target task data and finetuning task data.


Diversity \rightarrow coverage.

Consistency→ similarity.

Theorem (Multitask finetuning loss (Informal))

Given pre-trained foundation model and certain loss on target task, employing multitask finetuning on the this pretrained model with sufficient tasks and samples can help further reduce the loss on the target task.

Practical solution: Task selection

Experiments: Task selection algorithm

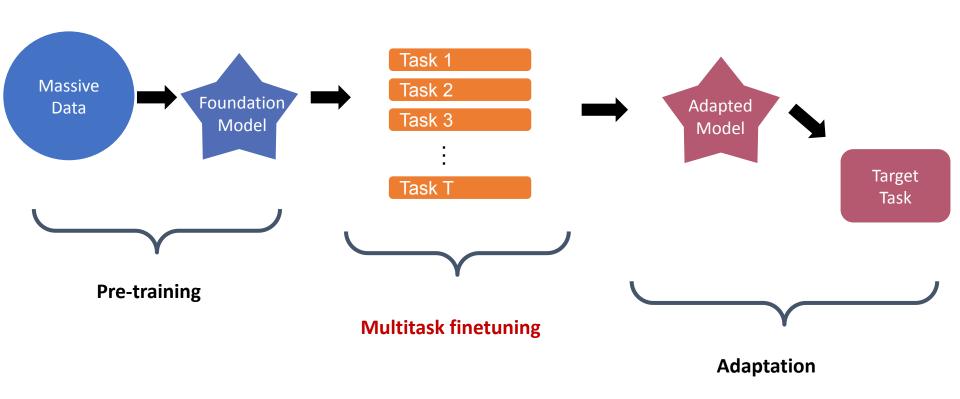
Pretrained	Selection	INet	Omglot	Acraft	CUB	QDraw	Fungi	Flower	Sign	COCO
CLIP	Random	56.29	65.45	31.31	59.22	36.74	31.03	75.17	33.21	30.16
	No Con.	60.89	72.18	31.50	66.73	40.68	35.17	81.03	37.67	34.28
	No Div.	56.85	73.02	32.53	65.33	40.99	33.10	80.54	34.76	31.24
	Selected	60.89	74.33	33.12	69.07	41.44	36.71	80.28	38.08	34.52
DINOv2	Random	83.05	62.05	36.75	93.75	39.40	52.68	98.57	31.54	47.35
	No Con.	83.21	76.05	36.32	93.96	50.76	53.01	98.58	34.22	47.11
	No Div.	82.82	79.23	36.33	93.96	55.18	52.98	98.59	35.67	44.89
	Selected	83.21	81.74	37.01	94.10	55.39	53.37	98.65	36.46	48.08
MoCo v3	Random	59.66	60.72	18.57	39.80	40.39	32.79	58.42	33.38	32.98
	No Con.	59.80	60.79	18.75	40.41	40.98	32.80	59.55	34.01	33.41
	No Div.	59.57	63.00	18.65	40.36	41.04	32.80	58.67	34.03	33.67
	Selected	59.80	63.17	18.80	40.74	41.49	33.02	59.64	34.31	33.86

Table 1: Results evaluating our task selection algorithm on Meta-dataset using ViT-B backbone. No Con.: Ignore consistency. No Div.: Ignore diversity. Random: Ignore both consistency and diversity.

Experiments: Effectiveness of Multitask Finetuning

		method	miniIm	ageNet	tieredIr	nageNet	DomainNet		
pretrained	backbone		1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	
MoCo v3	ViT-B	Adaptation Standard FT Ours	75.33 (0.30) 75.38 (0.30) 80.62 (0.26)	92.78 (0.10) 92.80 (0.10) 93.89 (0.09)	62.17 (0.36) 62.28 (0.36) 68.32 (0.35)	83.42 (0.23) 83.49 (0.23) 85.49 (0.22)	24.84 (0.25) 25.10 (0.25) 32.88 (0.29)	44.32 (0.29) 44.76 (0.27) 54.17 (0.30)	
	ResNet50	Adaptation Standard FT Ours	68.80 (0.30) 68.85 (0.30) 71.16 (0.29)	88.23 (0.13) 88.23 (0.13) 89.31 (0.12)	55.15 (0.34) 55.23 (0.34) 58.51 (0.35)	76.00 (0.26) 76.07 (0.26) 78.41 (0.25)	27.34 (0.27) 27.43 (0.27) 33.53 (0.30)	47.50 (0.28) 47.65 (0.28) 55.82 (0.29)	
DINO v2	ViT-S	Adaptation Standard FT Ours	85.90 (0.22) 86.75 (0.22) 88.70 (0.22)	95.58 (0.08) 95.76 (0.08) 96.08 (0.08)	74.54 (0.32) 74.84 (0.32) 77.78 (0.32)	89.20 (0.19) 89.30 (0.19) 90.23 (0.18)	52.28 (0.39) 54.48 (0.39) 61.57 (0.40)	72.98 (0.28) 74.50 (0.28) 77.97 (0.27)	
	ViT-B	Adaptation Standard FT Ours	90.61 (0.19) 91.07 (0.19) 92.77 (0.18)	97.20 (0.06) 97.32 (0.06) 97.68 (0.06)	82.33 (0.30) 82.40 (0.30) 84.74 (0.30)	92.90 (0.16) 93.07 (0.16) 93.65 (0.16)	61.65 (0.41) 61.84 (0.39) 68.22 (0.40)	79.34 (0.25) 79.63 (0.25) 82.62 (0.24)	
Supervised pretraining on ImageNet	ViT-B	Adaptation Standard FT Ours	94.06 (0.15) 95.28 (0.13) 96.91 (0.11)	97.88 (0.05) 98.33 (0.04) 98.76 (0.04)	83.82 (0.29) 86.44 (0.27) 89.97 (0.25)	93.65 (0.13) 94.91 (0.12) 95.84 (0.11)	28.70 (0.29) 30.93 (0.31) 48.02 (0.38)	49.70 (0.28) 52.14 (0.29) 67.25 (0.29)	
	ResNet50	Adaptation Standard FT Ours	81.74 (0.24) 84.10 (0.22) 87.61 (0.20)	94.08 (0.09) 94.81 (0.09) 95.92 (0.07)	65.98 (0.34) 74.48 (0.33) 77.74 (0.32)	84.14 (0.21) 88.35 (0.19) 89.77 (0.17)	27.32 (0.27) 34.10 (0.31) 39.09 (0.34)	46.67 (0.28) 55.08 (0.29) 60.60 (0.29)	

Table 2: **Results of few-shot image classification.** We report average classification accuracy (%) with 95% confidence intervals on test splits. Adaptation: Direction adaptation without finetuning; Standard FT: Standard finetuning; Ours: Our multitask finetuning; 1-/5-shot: number of labeled images per class in the target task.


Experiments: Few-shot Language task

	SST-2 (acc)	SST-5 (acc)	MR (acc)	CR (acc)	MPQA (acc)	Subj (acc)	TREC (acc)	CoLA (Matt.)
Prompt-based zero-shot Multitask FT zero-shot	83.6 92.9	35.0 37.2	80.8 86.5	79.5 88.8	67.6 73.9	51.4 55.3	32.0 36.8	2.0 -0.065
+ task selection	92.5	34.2	87.1	88.7	71.8	72.0	36.8	0.001
Prompt-based FT [†] Multitask Prompt-based FT + task selection	92.7 (0.9) 92.0 (1.2) 92.6 (0.5)	47.4 (2.5) 48.5 (1.2) 47.1 (2.3)	87.0 (1.2) 86.9 (2.2) 87.2 (1.6)	90.3 (1.0) 90.5 (1.3) 91.6 (0.9)	84.7 (2.2) 86.0 (1.6) 85.2 (1.0)	91.2 (1.1) 89.9 (2.9) 90.7 (1.6)	84.8 (5.1) 83.6 (4.4) 87.6 (3.5)	9.3 (7.3) 5.1 (3.8) 3.8 (3.2)
	MNLI (acc)	MNLI-mm (acc)	SNLI (acc)	QNLI (acc)	RTE (acc)	MRPC (F1)	QQP (F1)	
Prompt-based zero-shot Multitask FT zero-shot	50.8 63.2	51.7 65.7	49.5 61.8	50.8 65.8	51.3 74.0	61.9 81.6	49.7 63.4	
+ task selection Prompt-based FT [†] Multitask Prompt-based FT	62.4 68.3 (2.3) 70.9 (1.5)	64.5 70.5 (1.9) 73.4 (1.4)	65.5 77.2 (3.7) 78.7 (2.0)	61.6 64.5 (4.2) 71.7 (2.2)	64.3 69.1 (3.6) 74.0 (2.5)	75.4 74.5 (5.3) 79.5 (4.8)	57.6 65.5 (5.3) 67.9 (1.6)	
+ task selection	73.5 (1.6)	75.8 (1.4)	77.4 (1.6)	72.0 (1.6)	70.0 (1.6)	76.0 (6.8)	69.8 (1.7)	

Table 18: **Results of few-shot learning with NLP benchmarks.** All results are obtained using RoBERTa-large. We report the mean (and standard deviation) of metrics over 5 different splits. †: Result in Gao et al. (2021a) in our paper; FT: finetuning; task selection: select multitask data from customized datasets.

[Gao et al.] Gao, Fisch, and Chen. Making pre-trained language models better few-shot learners. ACL'2020.

Take Home Message

Thanks!