Feature Averaging: An Implicit Bias of Gradient Descent Leading to Non-Robustness in Neural Networks^{1,2}

Binghui Li

Zhixuan Pan

Kaifeng Lyu

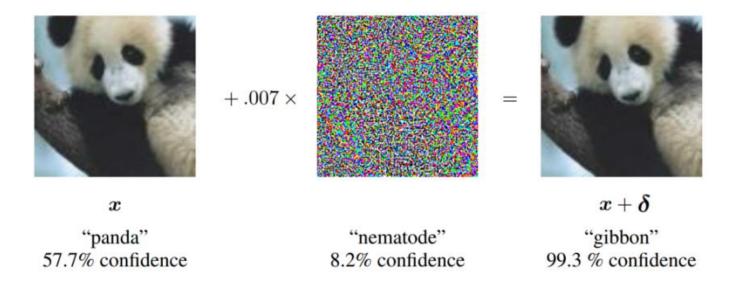
Jian Li

¹This work has been accepted by **ICLR 2025**, where the first two authors have equal contributions and the last author is the corresponding author.

²Our full paper can be found at https://arxiv.org/abs/2410.10322.

Adversarial Examples

- Although deep neural networks have achieved remarkable success in practice, it is well-known that modern neural networks are vulnerable to adversarial examples.
- Specifically, for a given image x, an indistinguishable small but adversarial perturbation δ is chosen to fool the classifier f to produce a wrong class using $f(x + \delta)$ [Szegedy et al, 2013].

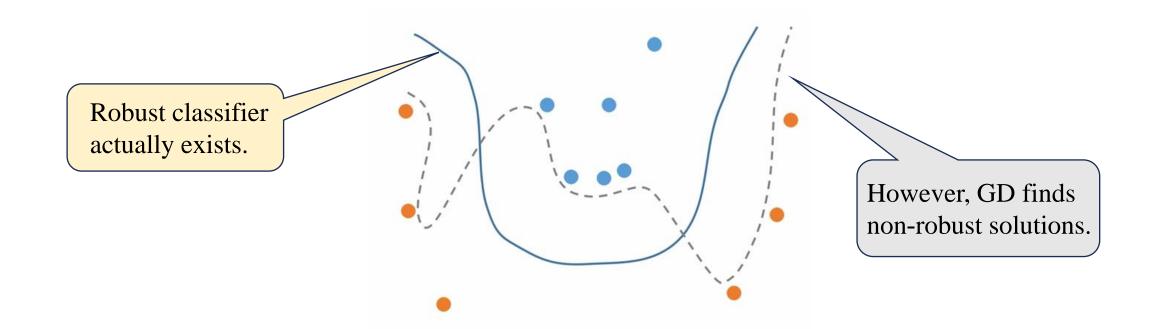


An Instance for Adversarial Example

Question

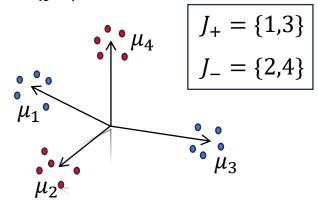
Our Fundamental Theoretical Questions:

Why do neural networks trained by **gradient descent algorithm** converge to the **non-robust solutions** that fail to classify **adversarial examples**?



Data Distribution

- Data distribution D_{binary} on $\mathbb{R}^d \times \{-1,1\}$ that consists of k clusters:
 - for each cluster, it corresponds to a cluster feature vector μ_i ($i \in [k]$);
 - μ_i for all $i \in [k]$ are orthogonal and $\|\mu_i\|_2 = \Theta(\sqrt{d})$;
 - Suppose that total k clusters can be divide into two disjoint classes with index sets J_+ and J_- that correspond to positive class and negative class, respectively;
 - positive and negative clusters are balanced: $\exists c \geq 1, c^{-1} \leq \frac{|J_+|}{|J_-|} \leq c$.
- An instance (x, y) sampled from cluster i:
 - label y = 1 if $i \in J_+$ and y = -1 if $i \in J_-$;
 - data input $x = \mu_i + \xi$, where random noise $\xi \sim N(0, \sigma^2 I_d)$ and $\sigma = \Theta(1)$.



An example for k = 4, c = 1

Learner Model: Two-Layer ReLU Network

• Two-layer ReLU network: for simplicity, we fix the second layer.

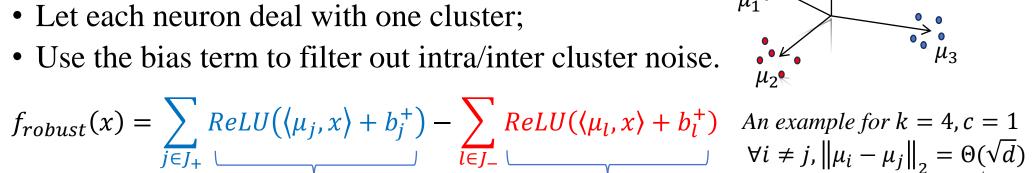
$$f_{\theta}(x) := \frac{1}{m} \sum_{r \in [m]} ReLU(\langle w_{1,r}, x \rangle + b_{1,r}) - \frac{1}{m} \sum_{r \in [m]} ReLU(\langle w_{-1,r}, x \rangle + b_{-1,r}),$$

where $\theta = \{w_{s,r}, b_{s,r}\}_{(s,r)\in\{1,-1\}\times[m]}$ are trainable parameters.

- Loss function: we apply logistic loss as $L(\theta) \coloneqq \frac{1}{n} \sum_{i=1}^{n} l(y_i f_{\theta}(x_i))$, where $l(z) \coloneqq \log(1 + e^{-z})$.
- Initialization: $w_{s,r}^{(0)} \sim N(0, \sigma_w^2 I_d)$, $\sigma_w^2 = \frac{1}{d}$ and $b_{s,r}^{(0)} \sim N(0, \sigma_b^2)$, $\sigma_b^2 = \frac{1}{d^2}$.
- Gradient descent algorithm: $\theta_{t+1} = \theta_t \eta \nabla_{\theta} L(\theta_t)$ with small learning rate $\eta = \Theta(\frac{1}{\sqrt{d}})$.

There Exists the Robust Solution!

- Indeed, it is easy to show a robust solution exists with robust radius $O(\sqrt{d})$:



deal with positive cluster j

deal with negative cluster l

frobust achieves optimal robustness.

GD Provably Learns Averaged Features

• Lemma (Weight Decomposition). During training, we can decompose the weight $w_{\varsigma r}^{(t)}$ as linear combination of the features (and some noise):

$$w_{s,r}^{(t)} = w_{s,r}^{(0)} + \sum_{j \in J_+} \lambda_{s,r,j}^{(t)} \mu_j + \sum_{j \in J_-} \lambda_{s,r,j}^{(t)} \mu_j + \sum_{i \in [n]} \sigma_{s,r,i}^{(t)} \xi_i.$$

- **Theorem** (Feature Averaging). For sufficiently large d, suppose we train the model using the gradient descent. After $T = \Theta(poly(d))$ iterations, with high probability over the sampled training dataset S, the weights of model $f_{\theta^{(T)}}$ satisfy:
 - The model achieves perfect standard accuracy: $\mathbb{P}_{(x,y)\sim D_{binarv}}\left[\operatorname{sgn}\left(f_{\theta^{(T)}}(x)\right)=y\right]=1-o(1).$
 - GD learns averaged features:

• GD learns averaged features:
$$\lambda_{s,r,j}^{(T)} \geq \Omega(1), \qquad \lambda_{-s,r,j}^{(T)} \leq o(1), \qquad \frac{\lambda_{s,r,j}^{(T)}}{\lambda_{s,r,k}^{(T)}} \leq O(1), \qquad \forall s \in \{-1,1\}, r \in [m], j \neq k \in J_s.$$
 Intuitively, it approximately satisfies:
$$w_{s,r} \propto \sum_{i \in J_s} \mu_i, \forall (s,r) \in \{-1,1\} \times [m]$$
 the same class the other class much than others

$$\frac{\lambda_{s,r,j}^{(T)}}{\lambda_{s,r,k}^{(T)}} \le O(1),$$

No large coeff is much than others Intuitively, it approximately satisfies:

$$w_{s,r} \propto \sum_{j \in J_s} \mu_j$$
, $\forall (s,r) \in \{-1,1\} \times [m]$

Averaged Features are Non-robust Features

Theorem. For the weights in a feature-averaging solution, for any choice of bias b, the model has nearly zero δ -robust accuracy for perturbation radius $\delta = \Omega(\sqrt{d/k})$.

(Recall that a robust solution exists with robust radius $O(\sqrt{d})$)

Intuition: for averaged features, the model approximately degenerates into a <u>two-neuron network</u> as follows,

$$f_{\theta}(x) \approx C(ReLU(\langle \sum_{j \in J_{+}} \mu_{j}, x \rangle + b_{+}) - ReLU(\langle \sum_{j \in J_{-}} \mu_{j}, x \rangle + b_{-}))$$
deal with all positive clusters deal with all negative clusters

In fact, the attack can be chosen as $\varepsilon \propto -\sum_{j \in J_+} \mu_j + \sum_{j \in J_-} \mu_j$

Detailed Feature-Level Supervisory Label

• One can show if one is provided detailed feature level label, some two-layer ReLU network can learn feature-decoupled solutions, which is provably more robust.

Theorem (Multiple-Info Helps Learning Feature-Decoupled Solutions). By given all cluster information for each data point, we can apply the standard gradient descent algorithm to solve the corresponding k-classification task, and we will derive the following multiple classifier $F(x) = (f_1, ..., f_k): \mathbb{R}^d \to \mathbb{R}^k$, where $f_i(x) \coloneqq ReLU(\langle w_i, x \rangle)$, which satisfies

- $w_i^{(t)} = w_i^{(0)} + \sum_{j \in [k]} \lambda_{i,j}^{(t)} \mu_j + \sum_{l \in [n]} \sigma_{i,l}^{(t)} \xi_l$
- After $T = \Theta(poly(d))$, it holds that: $\lambda_{i,i}^{(T)} = \Omega(1), \lambda_{i,j}^{(T)} = o(1), \forall i \in [k], j \in [k] \setminus \{i\}$.
- Comments: Human is more robust to small perturbations.
 - No adv training for human.
 - Adv training is slow (can we used std training to get a robust model?)
 - More detailed and structured supervisory information for human.
 - Such labeling in large scale is possible in the era of multi-model LLMs.

Real-World Experiments

Each element in the matrix located at position (i, j) is the average cosine value of the angle between the weight vector of i-th neuron and the feature vector μ_i of the j-th feature.

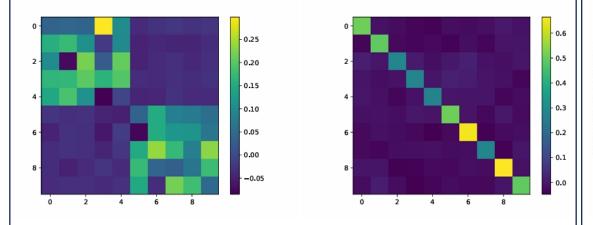


Figure 1: Illustration of Feature Averaging and Feature Decoupling

We create binary classification tasks from the MNIST and CIFAR10 datasets:

- Red: binary classifier trained by 2-classification task.
- Blue: binary classifier trained by 10-classification task.

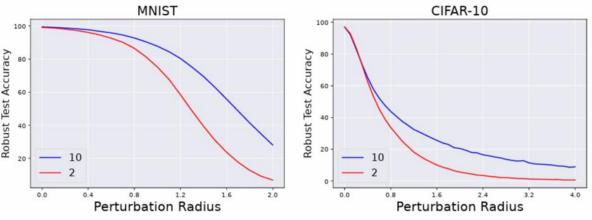
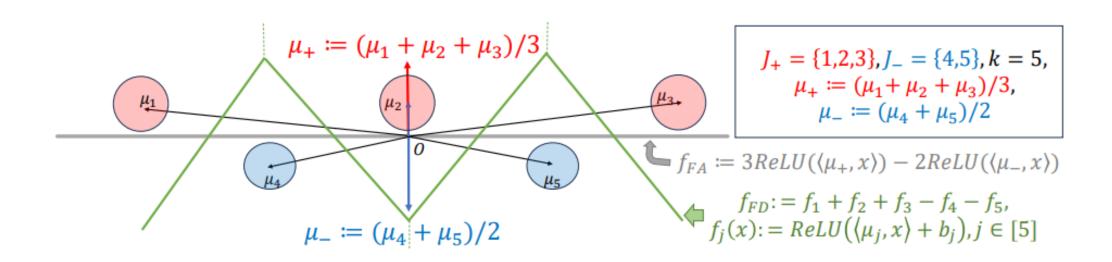


Figure 2: Robustness Improvement on MNIST and CIFAR10.

Take-Home Messages

- Message I: Adversarial examples may stem from averaged features learned by GD.
- Message II: More detailed/structured supervisory information helps achieving models with better robustness.



Thanks for listening!

My Homepage

Our Full Paper