Differentiable Rule Induction from Raw Sequence Inputs

Kun Gao¹, Katsumi Inoue², Yongzhi Cao³, Hanpin Wang³, Feng Yang¹

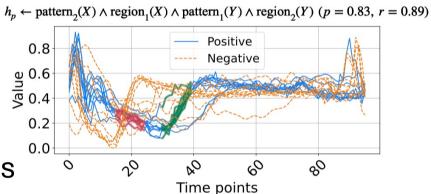
¹ Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR)

² National Institute of Informatics

³ School of Computer Science, Peking University

Motivation

- Learning rules from raw sequence to explain the ground-truth class
- To explain the ground truth class with patterns
- The patterns are related to some actions
- This action can also be used to explain data
- The same idea can be applied to healthcare, finance, energy, etc.

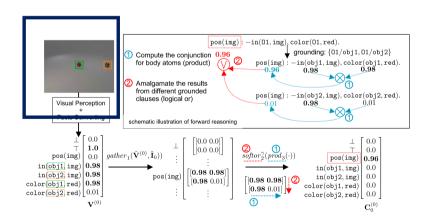


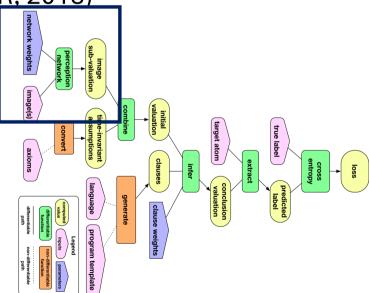
Challenges

• Label leakage: Most neuro-symbolic methods use labels of components to implement inductive/deductive logic programming

• α ILP (Shindo et al., Machine Learning, 2023)

• ∂ ILP (Evans and Grefenstette, JAIR, 2018)

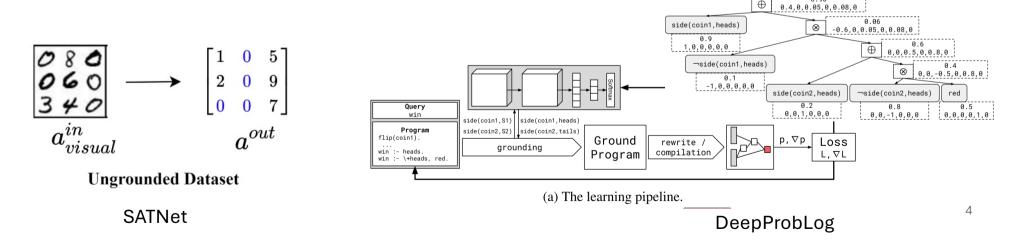




Related works

- SAT domain
 - SATNet (Topan et al.): Learning missing images of handwritten digits with neural networks.
- Logic programing domain

• DeepProbLog (Manhaeve et al.): Training perception and the probabilities of target atom at the same time.



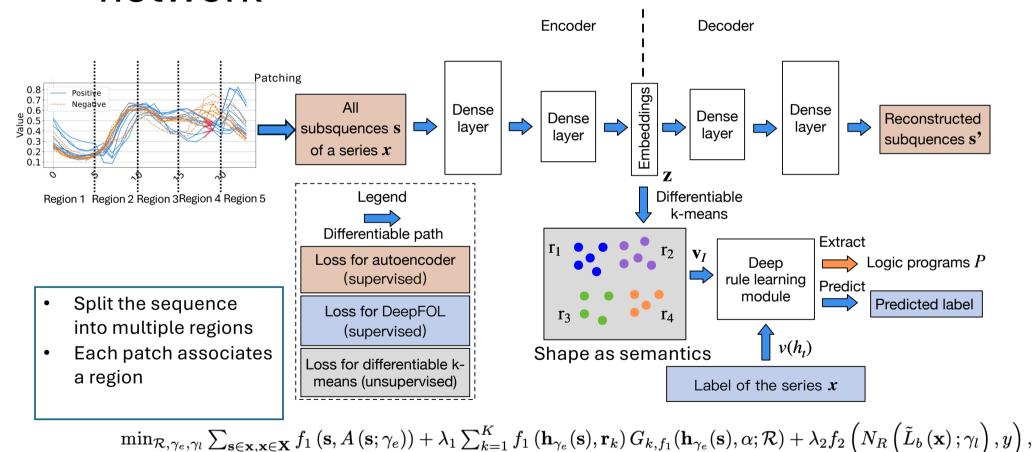
Language bias

- A variable X_i can be grounded with a feature
- Consider binary class, using h_t represent the positive class
- A ground-truth class sequence data can be described with its features:

$$h_t \leftarrow pattern_{i_1}(X_{j_1}), region_{k_1}(X_{j_1}), \dots, pattern_{i_{n_1}}(X_{j_{n_2}}), region_{k_{n_3}}(X_{j_{n_2}}),$$

- The pattern predicate can express any discriminative shapes
- region predicates attached to pattern predicates can express
 - The temporal relations of two patterns is important
 - The specific time information of patterns is important
- One region corresponds to one pattern, and one pattern may occur in multiple regions

Methods: Clustering method and neural network



Clustering methods

- Differentiable clustering¹:
 - K, number of clusters
 - γ , parameters in the autoencoder
 - f, distance function

$$\min_{\mathcal{R}, \gamma} \sum_{\mathbf{x} \in \mathbf{X}} f(\mathbf{x}, A(\mathbf{x}; \gamma)) + \lambda \sum_{k=1}^{K} f(\mathbf{h}_{\gamma}(\mathbf{x}), \mathbf{r}_{k}) G_{k, f}(\mathbf{h}_{\gamma}(\mathbf{x}), \alpha; \mathcal{R}),$$
Autoencoder encoderclusters weights

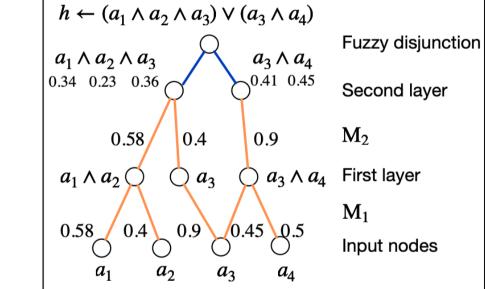
Differentiable weight function: Softmax function

$$G_{k,f}(\mathbf{h}_{\gamma}(\mathbf{x}),\alpha;\mathcal{R}) = \frac{e^{-\alpha f(\mathbf{h}_{\gamma}(\mathbf{x}),\mathbf{r}_{k})}}{\sum_{k'=1}^{K} e^{-\alpha f(\mathbf{h}_{\gamma}(\mathbf{x}),\mathbf{r}_{k'})}},$$
• The sum of all weights is 1
• The smaller the distance, the larger the weight

Rule learning module¹

The forward computation:

$$\hat{y} = \tilde{\bigvee}_{i=1}^{m} \left(g_k \circ g_{k-1} \circ \dots \circ g_1(\mathbf{v}_I)\right)[i],$$
 $g_i(\mathbf{x}_{i-1}) = \frac{1}{1-d} \operatorname{ReLU}\left(\mathbf{M}_i \mathbf{x}_{i-1} - d\right),$
 $\mathbf{M}_i[j,k] = \frac{e^{\tilde{\mathbf{M}}_i[j,k]}}{\sum_{k=1}^{n_{\mathrm{in}}} e^{\tilde{\mathbf{M}}_i[a,k]}}.$



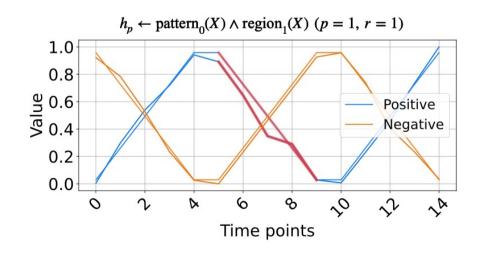
- Interpretable matrix \mathbf{M}_P
 - The product of each softmax-valued layer

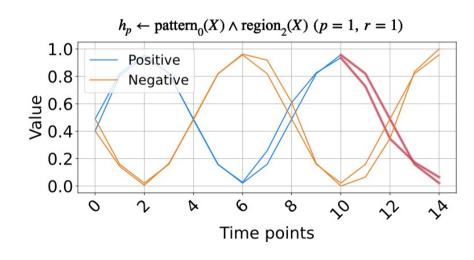
$$\mathbf{M}_P = \prod_{i=1}^k \mathbf{M}_i$$

¹ Kun Gao, Katsumi Inoue, Yongzhi Cao, and Hanpin Wang. A differentiable first-order rule learner for inductive logic programming. Artif. Intell., 331:104108, 2024.

Experiments: retrieve the pre-defined rules

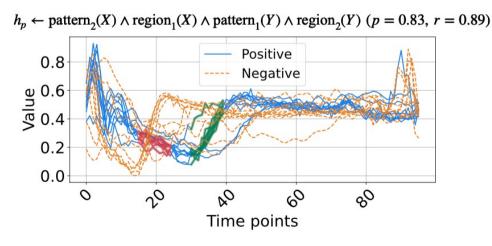
- Each class has two patterns: increasing and decreasing
- Each pattern has a length of 5
- The learned rules and the corrected patterns can be presented as follows¹



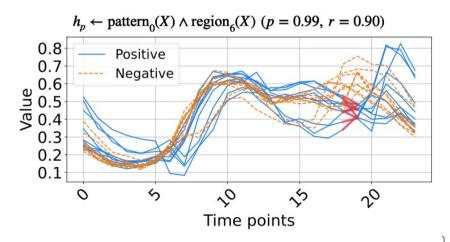


Experiments: learning from UCR archive

- We choose ECG and ItalyPow.Dem. from UCR binary variable time series data
- For ECG, a decrease (15 to 25) and then increase (30 to 40) is key information for positive class
- For ItalyPow.Dem., lower values around 18 to 19 is key information for positive class



(a) A rule from ECG dataset.



(b) A rule from ItalyPow.Dem. dataset.

Experiments: learning from UCR archive

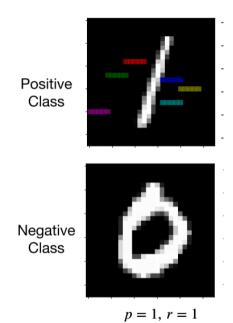
- Compare the classification accuracy of extracted rules (NeurRL(R)) from the model and neural networks (NeurRL(N)) with baselines
- The discrete rules decrease the performance of the model

Table 1: Classification accuracy on 13 binary UCR datasets with different models.

Dataset	C.	I.	Length	Xu	BoW	SSSL	NeurRL(R)	NeurRL(N)
Coffee	2	56	286	0.588	0.620	0.792	0.964	1.000
ECG	2	200	96	0.819	0.955	0.793	$\overline{0.820}$	0.880
Gun point	2	200	150	0.729	0.925	0.824	0.760	0.873
ItalyPow.Dem.	2	1096	24	0.772	0.813	0.941	0.926	0.923
Lighting2	2	121	637	0.698	0.721	0.813	0.689	0.748
CBF	3	930	128	0.921	0.873	1.000	0.909	0.930
Face four	4	112	350	0.833	0.744	0.851	0.914	$\overline{0.964}$
Lighting7	7	143	319	0.511	0.677	0.796	0.737	0.878
OSU leaf	6	442	427	0.642	0.685	0.835	0.844	0.849
Trace	4	200	275	0.788	1.00	1.00	0.833	0.905
WordsSyn	25	905	270	0.639	0.795	0.875	0.932	0.946
OliverOil	4	60	570	0.639	0.766	0.776	$\overline{0.768}$	0.866
StarLightCurves	3	9236	2014	0.755	0.851	0.872	0.869	0.907
Mean accuracy				0.718	0.801	0.859	0.842	0.891

Experiments: Learning from images

- Transfer the image to sequence data
- Set the images with the number 1 as the positive class and the images with the number 0 as the negative class.
- Each highlighted sequence and its period (location) can distinguish the images with the number 1 from the images with the number 0.
- The precision = 1 and the recall = 1 for the learned rule presented on the side.



Experiments: learning from UCR archive

- Compare the accuracy and running time with non-differentiable kmeans
- Differentiable k-means can incorporate the differentiable rule learning method to have a better performance based on the nondifferentiable k-means with differentiable rule learning method

Table 2: Comparisons with non-differentiable k-means clustering algorithm.

Dataset	Non-differaccuracy	Non-differentiable k -means accuracy running time (s)		Differentiable k -means accuracy running time (s)		
Coffee	0.893	313	0.964	42		
ECG	0.810	224	0.820	65		
Gun point	0.807	102	0.740	35		
ItalyPow.Dem.	0.845	114	0.926	63		
Lighting2	0.672	1166	0.689	120		

Ablation study: Comparing accuracy with and without pre-training

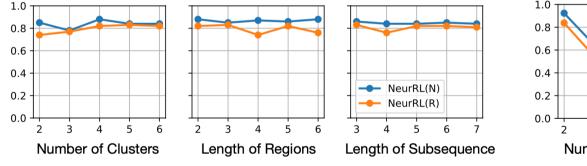
- With pre-training: Pre-train autoencoder and clustering method (k-means)
- Without pre-training: Train autoencoder, differentiable clustering method, and rule-learning module together

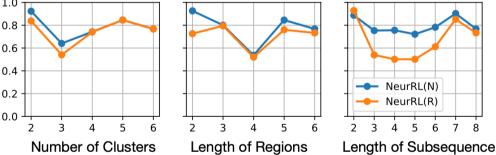
Dataset	With	pre-training	Without pre-training		
Dataset	Accuracy	Running time (s)	Accuracy	Running time (s)	
Coffee	1.00, 0.96	42	0.83, 0.81	30	
ECG	0.88 , 0.82	65	0.87, 0.64	53	
ItalyPow.Dem.	0.92, 0.93	63	0.75, 0.80	61	
Gun Point	0.87 , 0.76	35	0.86, 0.43	31	
Lighting2	0.75 , 0.69	120	0.64, 0.60	63	

Table 3: Ablation study: With vs. without pre-training autoencoder and clustering model. The first accuracy is obtained by NeurRL(N) and the second accuracy is obtained by NeurRL(R).

Ablation study: Sensitivity of model

- The key hyperparameters
 - Number of clusters
 - Length of regions
 - Length of subsequences





(b) On ItalyPow.Dem. dataset.

Conclusion

Conclusion

- Learning from raw input without pre-defined object labels (avoid explicit supervised labels)
- Fully differentiable rule learning process
- Interpretability: Explain the data and model

Limitations

- Learning from time series data with missing values
- Learning from sequences of raw images

Thank you for your attention!