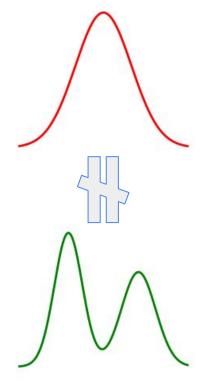
Test-time Alignment of Diffusion Models without Reward Over-optimization

Sunwoo Kim, Minkyu Kim, Dongmin Park

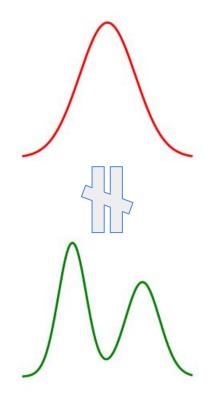
KRAFTON

Why Alignment of Diffusion Models?



Pre-trained Distribution

Why Alignment of Diffusion Models?



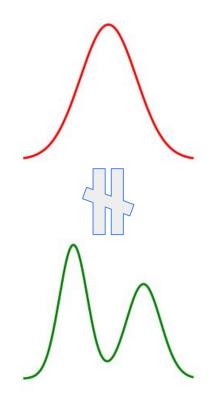
Pre-trained Distribution

Low aesthetic quality

crocodile

+ High aesthetic quality

Why Alignment of Diffusion Models?



Pre-trained Distribution

- Low aesthetic quality
- Low text-image alignment

crocodile

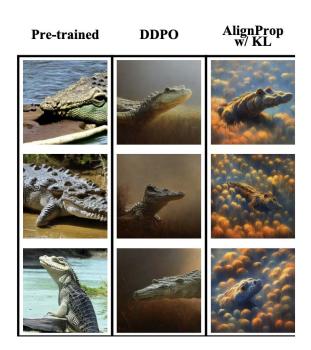
cat and a dog

- + High aesthetic quality
- + High text-image alignment

Pre-trained

Target Reward:

Aesthetic



Target Reward:

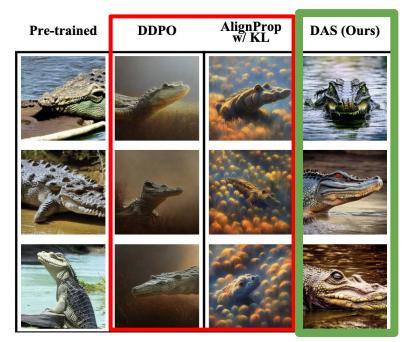
Aesthetic

Reward **Over-optimization**

- Low Diversity
- Low Unseen Reward

Target Reward:

Aesthetic



Reward **Over-optimization**

- Low Diversity
- Low Unseen Reward

- + High Target Reward
- + **High** Diversity
- + High Unseen Reward

$$p_{ ext{tar}} = rg\max_{p} \mathbb{E}_{x \sim p} \left[r\left(x
ight)
ight] - lpha D_{ ext{KL}} \left(p \left| \left| p_{ ext{pre}}
ight)
ight.$$

$$p_{ ext{tar}} = rg \max_{p} \mathbb{E}_{x \sim p} \left[r \left(x
ight)
ight] - lpha D_{ ext{KL}} \left(p \left| \left| p_{ ext{pre}}
ight)
ight]$$
 maximize expected reward

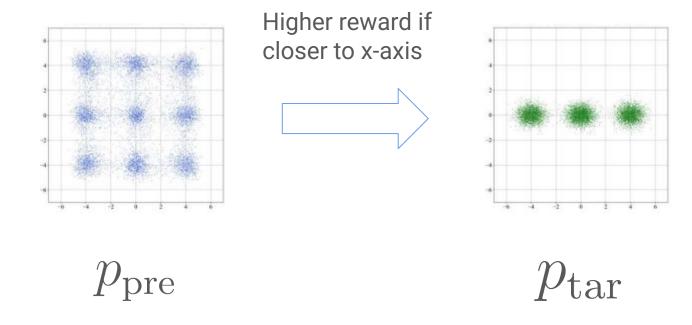
$$p_{ ext{tar}} = rg \max_{p} \mathbb{E}_{x \sim p} \left[r \left(x
ight)
ight] - lpha D_{ ext{KL}} \left(p \, || p_{ ext{pre}}
ight)$$
 maximize stay close to expected reward pre-trained distribution

$$p_{ ext{tar}} = rg\max_{p} \mathbb{E}_{x \sim p} \left[r\left(x
ight)
ight] - lpha D_{ ext{KL}} \left(p \left| \left| p_{ ext{pre}}
ight)
ight.$$

$$p_{ ext{tar}} = rac{1}{\mathcal{Z}} p_{ ext{pre}} \left(x
ight) \exp \left(rac{r \left(x
ight)}{lpha}
ight)$$

Optimization ≈ **Inference**

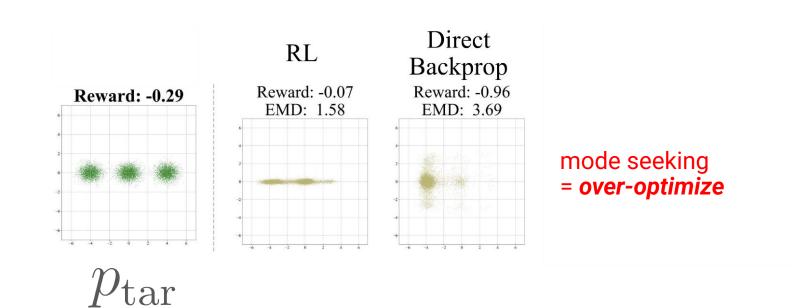
Reward Aligned Target Distribution



Limitations in Prior Works - Fine-tuning

Solve 'Optimization' Problem

$$\underset{\theta}{\text{minimize}} \mathcal{D}_{\text{KL}}(p_{\theta} || p_{\text{tar}})$$



Limitations in Prior Works - Guidance

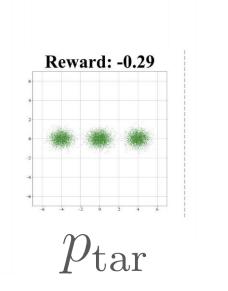
Solve 'Inference' Problem

$$\nabla_{x_t} \log p_{\text{tar},t}(x_t) \approx \nabla_{x_t} \log p_{\text{pre},t}(x_t) + \frac{1}{\alpha} \nabla_{x_t} r(\hat{x}_0(x_t))$$

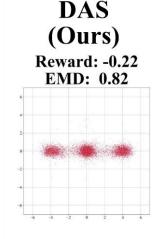
Solution - DAS (Diffusion Alignment as Sampling)

Solve 'Inference' Problem

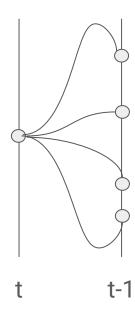
- + High target reward via test-time search based on tempered SMC
- + Overcome over-optimization via direct sampling



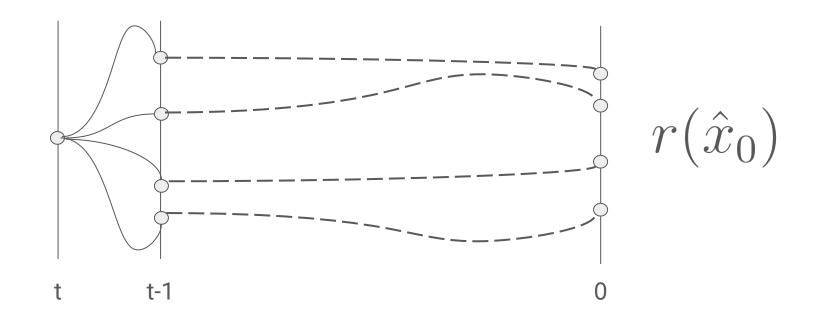
High target reward w/o mode seeking



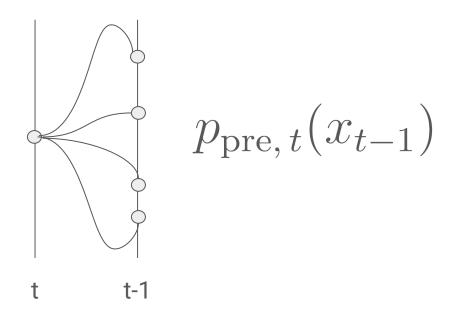
1. **Propose** multiple samples at current denoising step using **reward guidance**



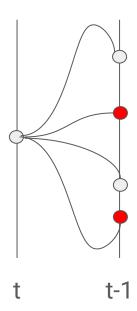
2. Estimate **expected rewards** of each samples using one-step denoising



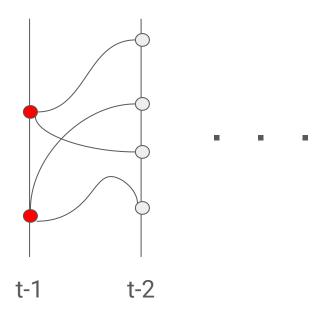
3. Calculate the **probability** of each samples **respect to pre-trained model**



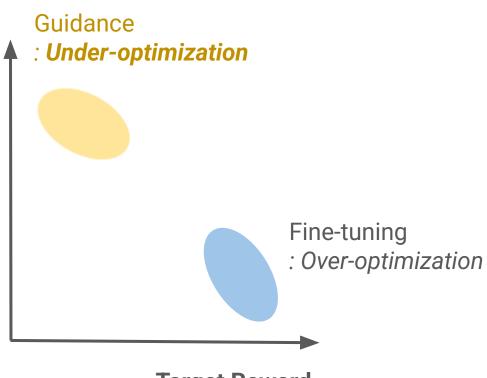
4. Combine two criteria and select top samples



5. Repeat the previous with **tempering**

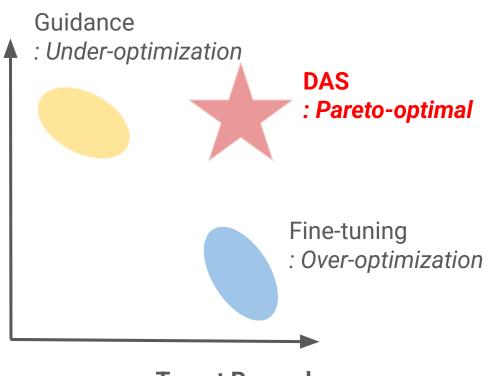


Unseen Rewards, Diversity

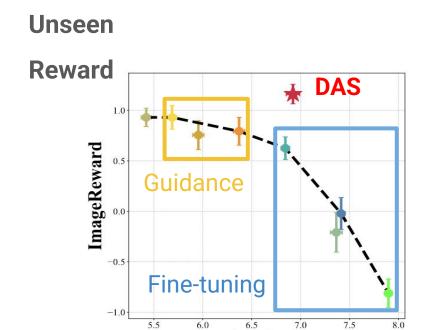


Target Reward

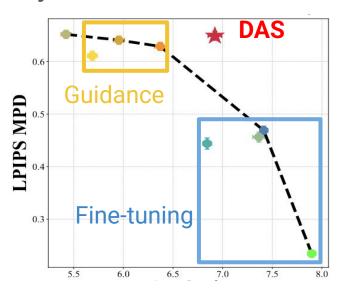
Unseen Rewards, Diversity



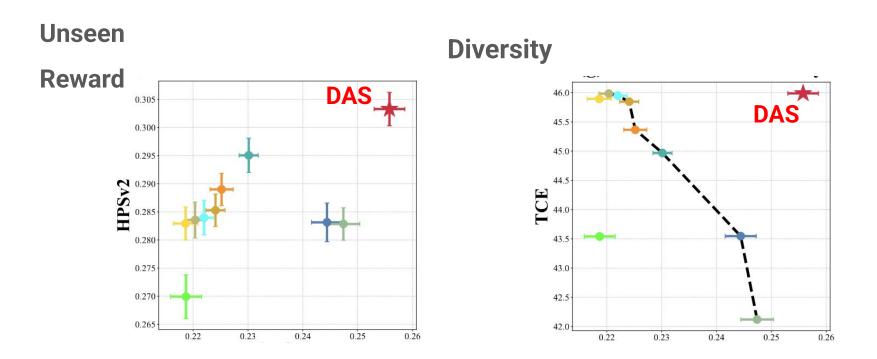
Target Reward



Diversity

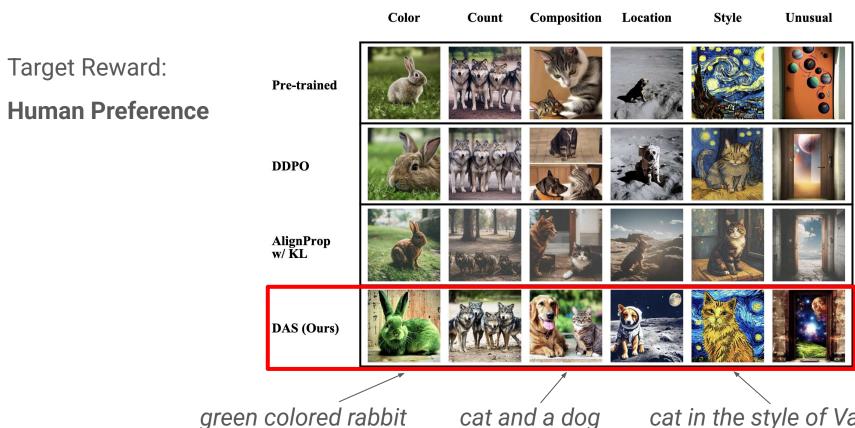


Aesthetic



Human Preference

DAS effectively Optimizes Rewards

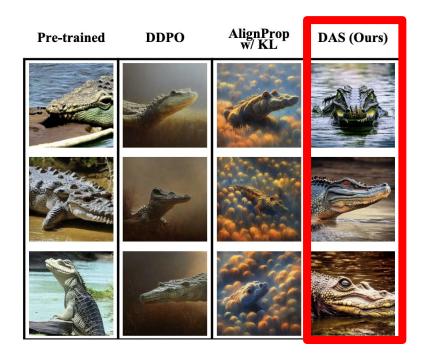


cat in the style of Van Gogh cat and a dog

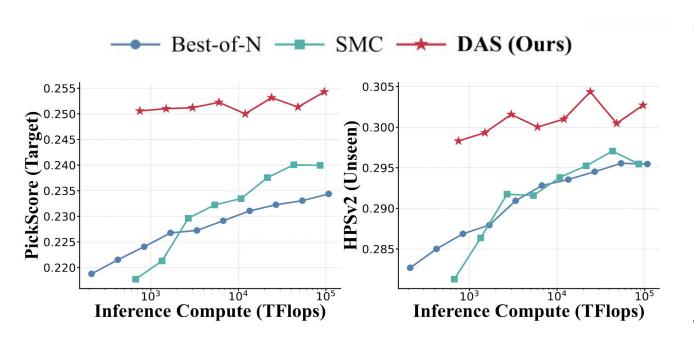
DAS effectively Mitigates Over-optimization

Target Reward:

Aesthetic



Compute-efficient Test-time Scaling

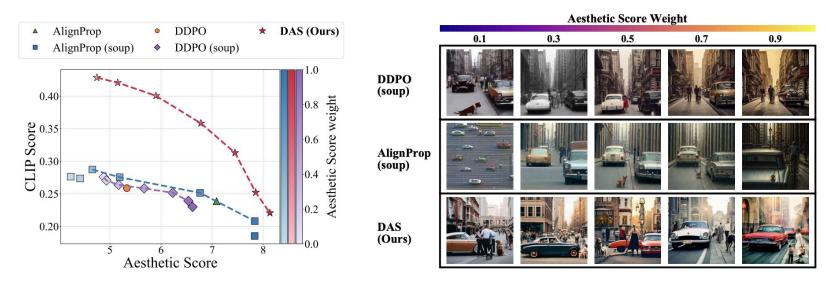


HOW?

- ProposalDistribution
- Tempering
 - Technique
- => For theoretical properties, check out the paper!

Multi-reward Alignment

$$w \cdot \text{Aesthetic Score} + (1 - w) \cdot 20 \cdot \text{CLIPScore}$$



(a) Trade-off in multi-objective optimization.

(b) Generated samples according to reward weights

Thank You!

For more:

paper: https://openreview.net/forum?id=vi3DjUhFVm

code: https://github.com/krafton-ai/DAS