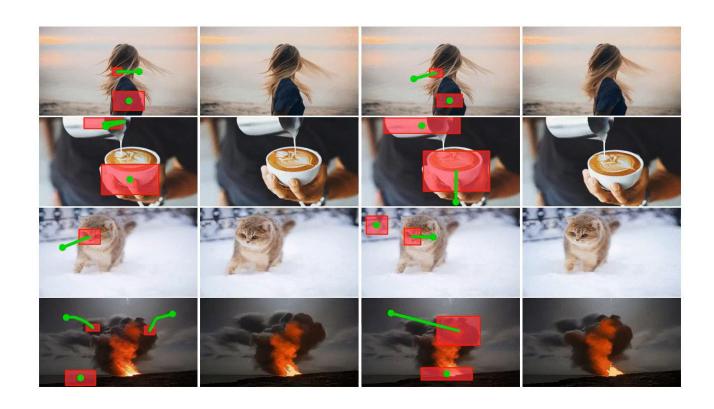
SG-I2V: Self-Guided Trajectory Control in Image-to-Video Generation

Koichi Namekata, Sherwin Bahmani, Ziyi Wu, Yash Kant, Igor Gilitschenski, David B. Lindell *ICLR*, 2025



91 Problem Definition

Trajectory-conditioned image-to-video generation

O2 Problem Definition

Trajectory-conditioned image-to-video generation

Input

Image,
Bounding boxes,
Trajectories

03 Problem Definition

Trajectory-conditioned image-to-video generation

Input

Image,
Bounding boxes,
Trajectories

Output

Videos following the trajectories

04 Method

Build on pre-trained image-to-video diffusion models (Stable Video Diffusion)

05 Method

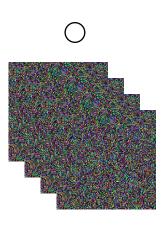
Build on pre-trained image-to-video diffusion models (Stable Video Diffusion)

- Previous work:
 - **X** Computationally expensive finetuning
 - × Require motion-annotated dataset collection

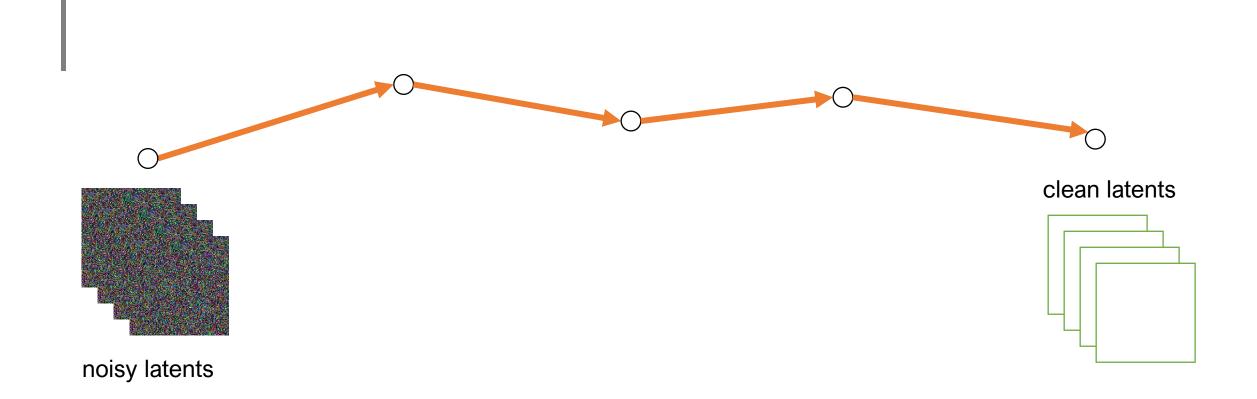
06 Method

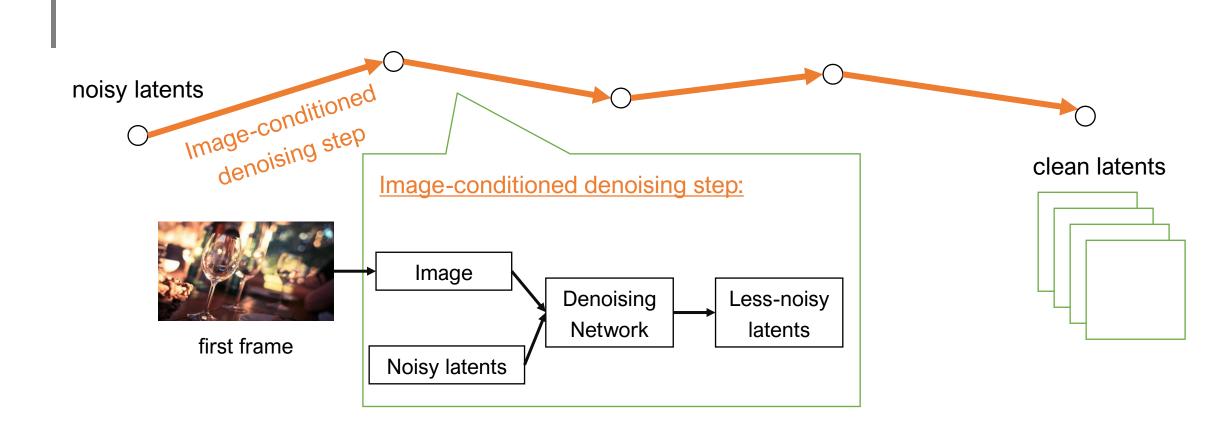
Build on pre-trained image-to-video diffusion models (Stable Video Diffusion)

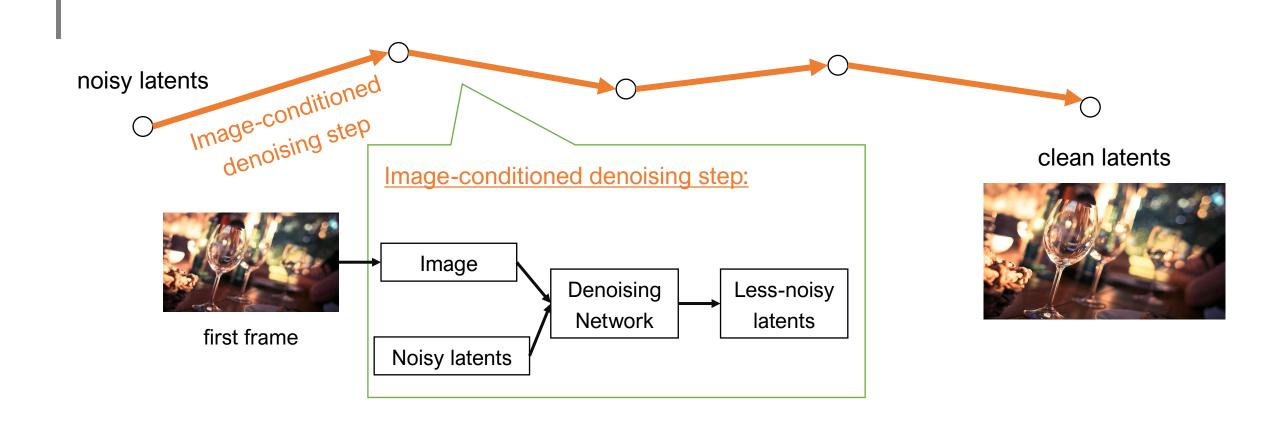
- Previous work:
 - X Computationally expensive finetuning
 - X Require motion-annotated dataset collection
- This work:
 - √ No finetuning
 - ✓ Relies solely on the knowledge present in the pre-trained image-to-video diffusion models.

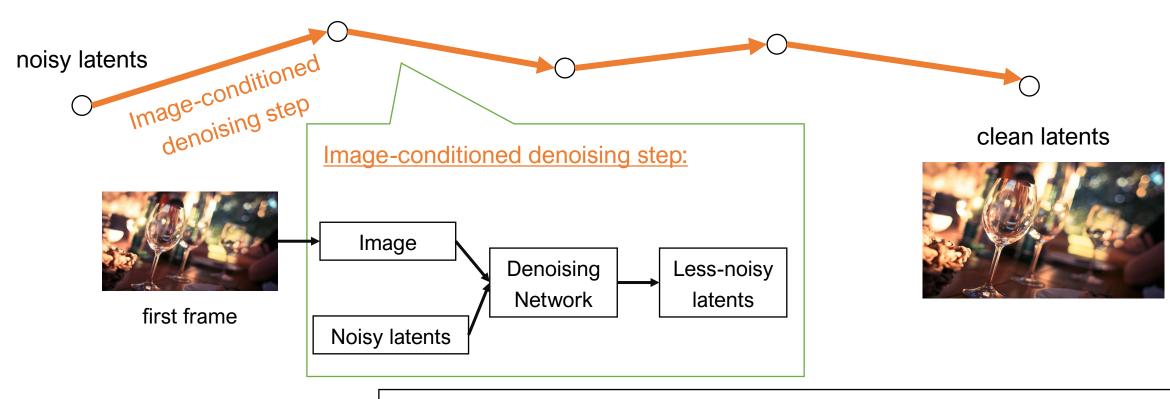


noisy latents







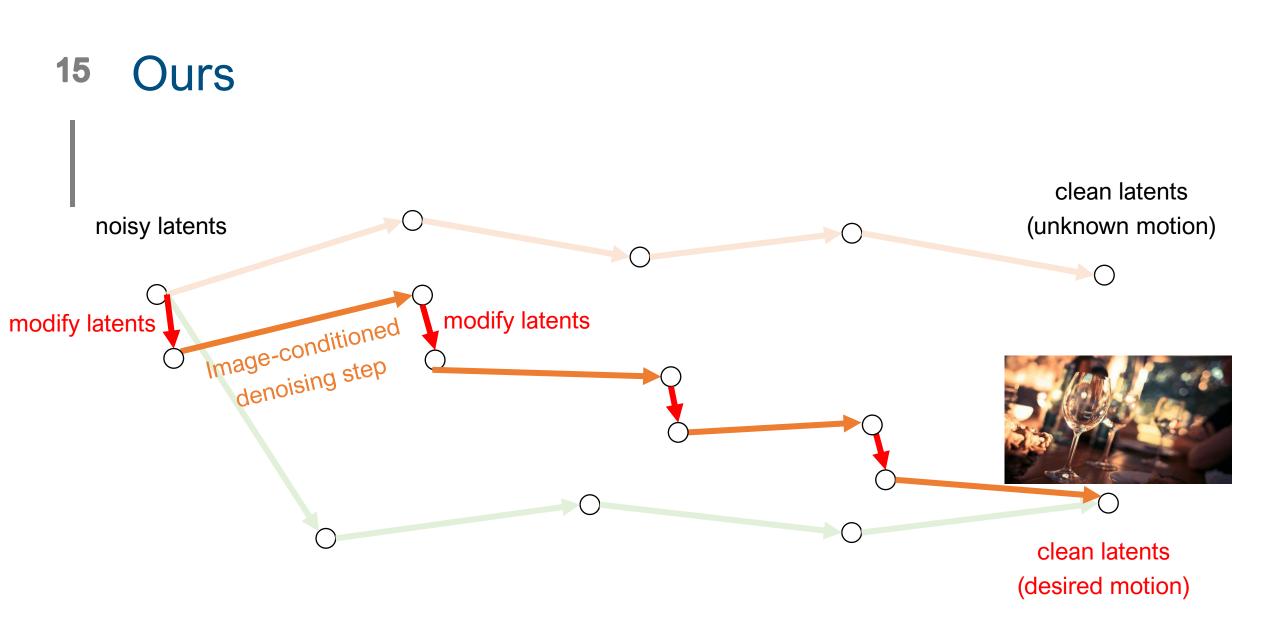


× We do not have control over the motions of generated videos

13 Previous work

14 Previous work

× We need to finetune the denoising network



16 How do we modify latents?

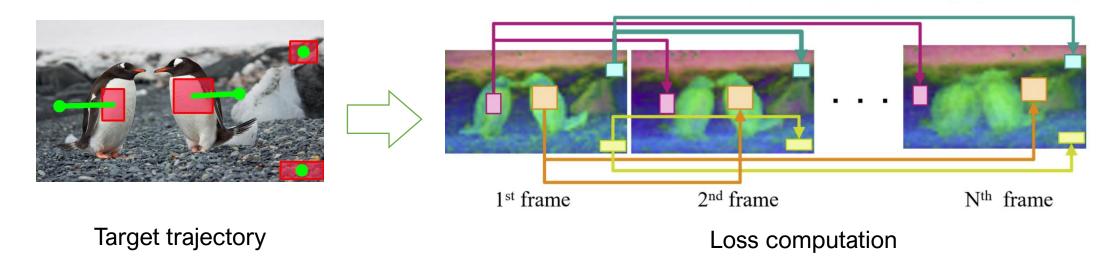
Internal feature maps (PCA visualization)

Generated videos

Motion correspondences!

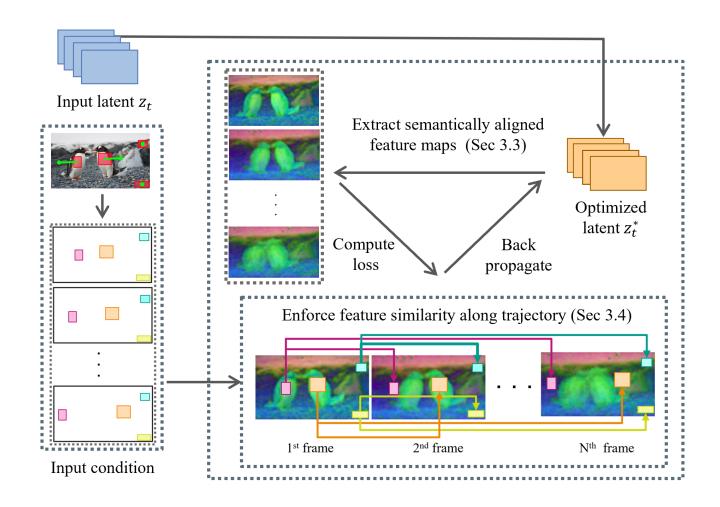
17 How do we modify latents?

 Design loss function that encourages feature similarity within each bounding box along the trajectory.



Loss is backpropagated through the input latents

18 How do we modify latents?



Optimization process

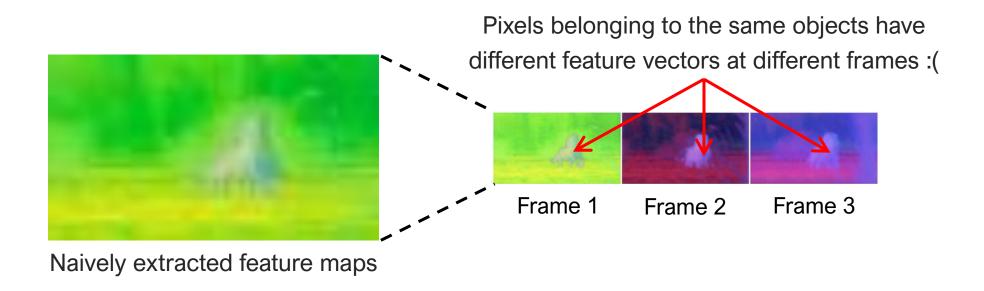
Challenge I: How to obtain semantically aligned feature maps?

Issue: naively extracted feature maps are not semantically aligned

Naively extracted feature maps

Challenge I: How to obtain semantically aligned feature maps?

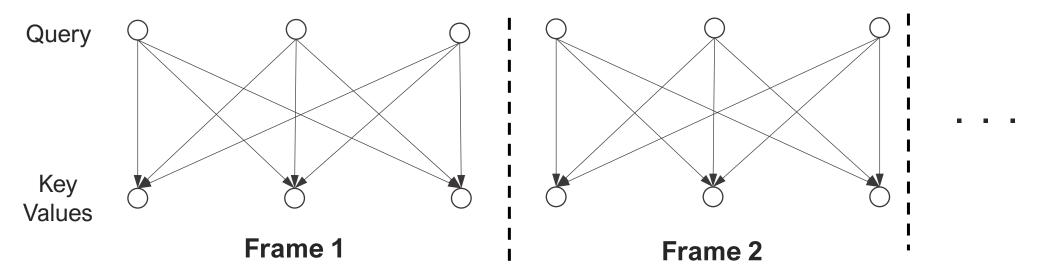
Issue: naively extracted feature maps are not semantically aligned



Challenge I: How to obtain semantically aligned feature maps?

Key finding: We can produce semantically aligned feature maps by modifying the computations of self-attention layers.

Original spatial self-attention

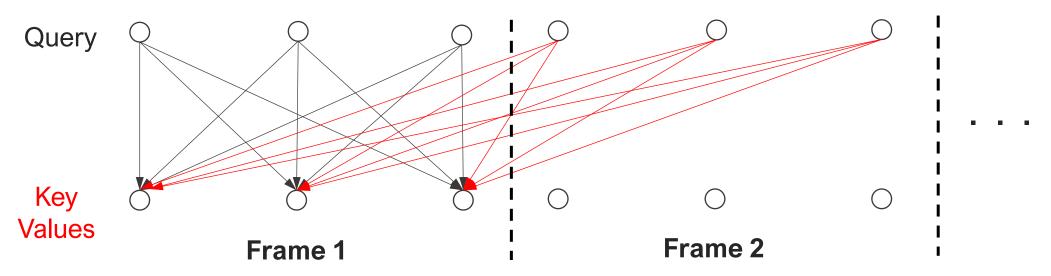


Self-attention is computed independently for each frame

Challenge I: How to obtain semantically aligned feature maps?

Key finding: We can produce semantically aligned feature maps by modifying the computations of self-attention layers.

Modified spatial self-attention

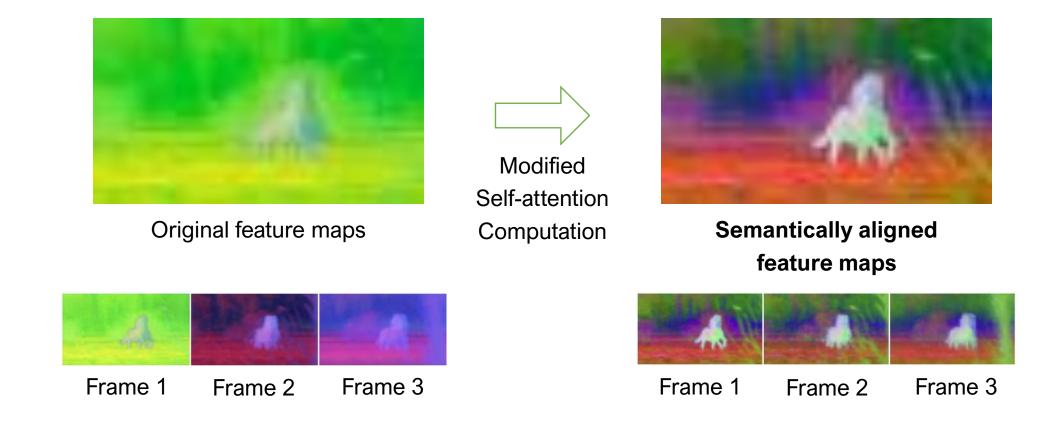


Replace the key/value tokens with that of the first frame

-> Produced feature maps are weighted sum of the value tokens from the first frame

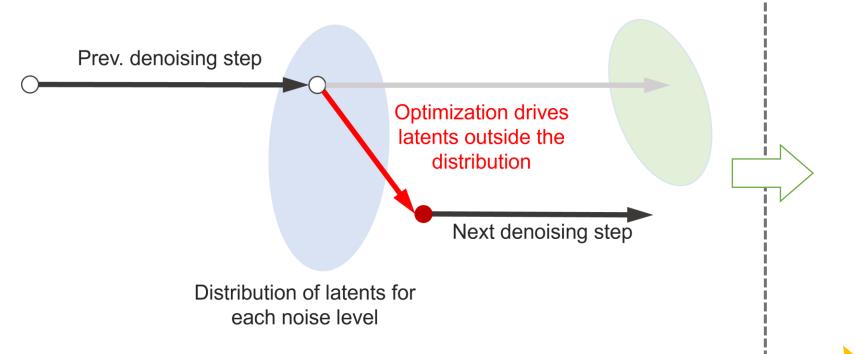
Challenge I: How to obtain semantically aligned feature maps?

Key finding: We can produce semantically aligned feature maps by modifying the computations of self-attention layers.

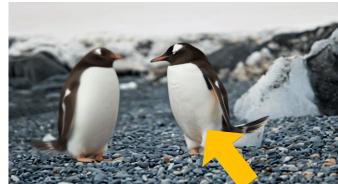


24 Challenge II: Recovering visual quality

★ Optimized latents may become out-of-distribution



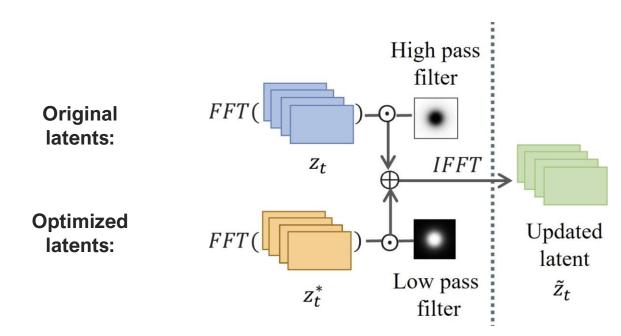
Visual quality degradation



25 Challenge II: Recovering visual quality

Key observation: only the low-frequency components of optimized latents significantly influence motion.

Solution: Preserve high-frequency components of the original latents



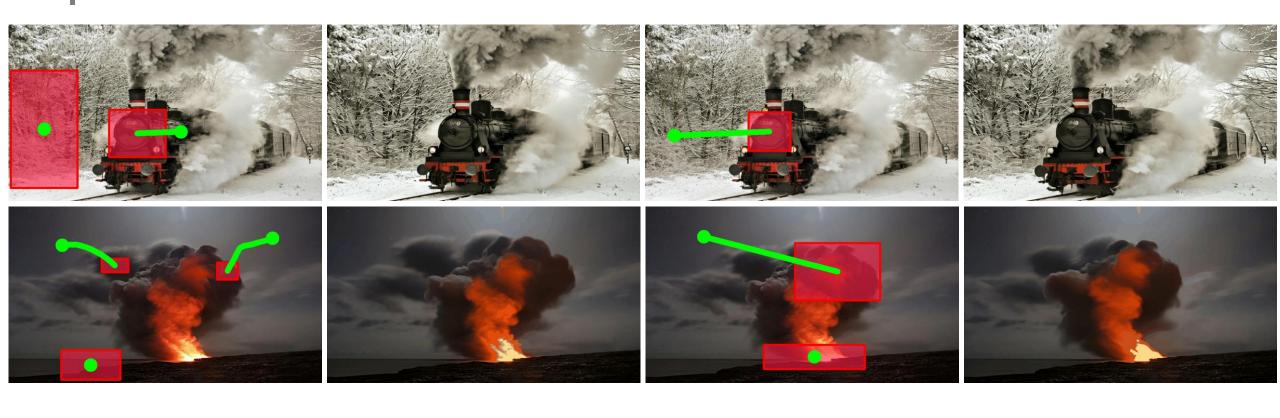
26 Challenge II: Recovering visual quality

Ablation study: this simple post-processing technique recovers visual quality, while maintaining the motions of the optimized latents.



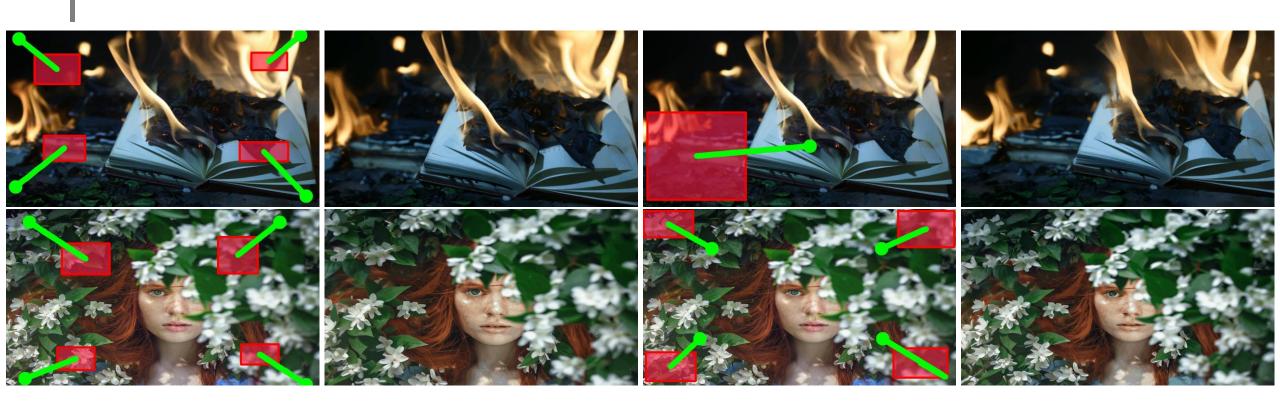
27 Results

√ controls both rigid (e.g., train) and non-rigid (e.g., smokes) motions



28 Results

√ handles camera motions (e.g., zooming in, zooming out)



29 More Results

√ These results demonstrate versatile control abilities of our approach!

30 Qualitative comparison with supervised baselines

Ours DragNUWA DragAnything Input (finetuning-free) (finetuned) (finetuned)

Thank you for listening!

- Project website: https://kmcode1.github.io/Projects/SG-I2V/
- Poster session:
 - Title: SG-I2V: Self-Guided Trajectory Control in Image-to-Video Generation
 - Poster Session 2 (Thu 24 Apr 3 p.m. 5 p.m.)

