

Cross-Embodiment Dexterous Grasping with Reinforcement Learning

Haoqi Yuan, Bohan Zhou, Yuhui Fu, Zongqing Lu ICLR 2025

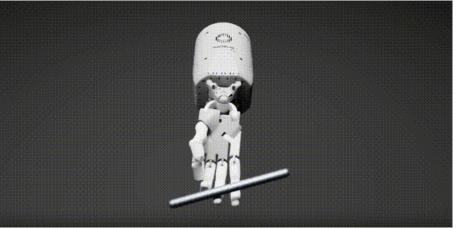
Project page: https://sites.google.com/view/crossdex

Code: https://github.com/PKU-RL/CrossDex/

About me: https://yhqpkueecs.github.io/

Background

- > Dexterous grasping
 - > Grasping is the **fundamental skill** for robotic manipulation
 - ➤ Object rearrangement, tool use, in-hand manipulation, ...



- ➤ Challenges in **universal dexterous grasping**:
 - ➤ High degrees-of-freedom, high-dimensional action space
 - ➤ Diverse object properties: geometry, friction, rigidity...
 - > Complex real-world scenarios: clustered scene, tabletop settings, object orientation, ...

Background

➤ Object-level generalization: grasping datasets + large-scale reinforcement learning (RL)

Human data / synthetic data in simulation

Xu et al., 2023; Wan et al., 2023; Zhang et al., 2024

(UniDexGrasp)

➤ Embodiment-level generalization: ?

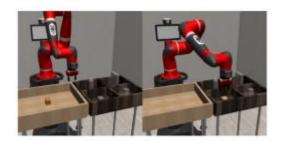


Allegro hand: 4 fingers, 16 DoF, 1.6x scale

Shadow hand: 5 fingers, >20 DoF, 1x scale

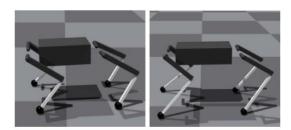
Background

- **Cross-embodiment learning**: learn a unified model for various embodiments
 - Establish embodiment-agnostic understanding on physical tasks and interactions
 - Enhance generalization
 - > Robot arms



Bousmalis et al., 2023 Wang et al., 2024 Chen et al., 2024

> Embodiment variants

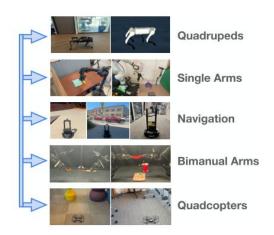


Hejna et al., 2021; Yu et al., 2022; Liu et al., 2022; Patel et al., 2024

➤ Object-centric manipulation

Salhotra et al., 2023 Xu et al., 2024

➤ Unify all embodiments



Doshi et al., 2024 Yang et al., 2024

➤ We study how to train **cross-embodiment dexterous grasping** models

Problem formulation

> Tabletop dexterous grasping POMDP $M_{h,\omega} = \langle \mathcal{O}, \mathcal{S}, \mathcal{A}, \mathcal{T}, R, \mathcal{U} \rangle$

Dexterous hand embodiment $h \in \mathcal{H}$

Object $\omega \in \Omega$

 \triangleright Goal: learn a cross-embodiment policy $\pi(a_t|o_t)$, maximizing expected return on all embodiments and objects

$$\sum_{h \in \mathcal{H}, \omega \in \Omega} \mathbb{E} \left[\sum_{t=0}^{T-1} \gamma^t r_t \right]$$

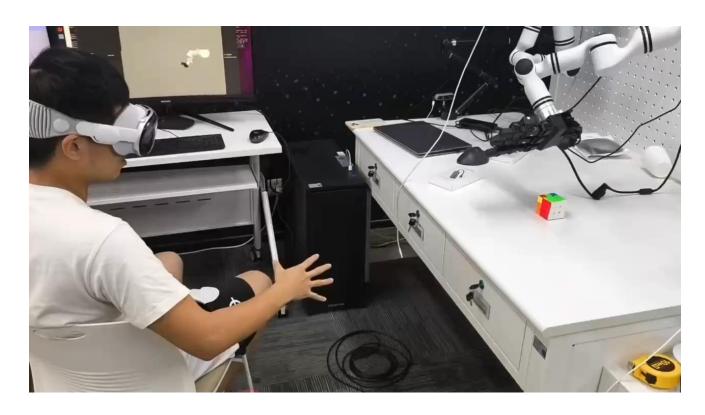
Problem formulation

- ➤ Observation space
 - Proprioception: joint positions, 3D keypoints
 - Object perception: 6D pose (in simulation) / point cloud (real world)

- > Action space
 - Target joint positions for PD controller
- ➤ Challenges in cross-embodiment learning:
 - ➤ Different dexterous hands vary in DoFs and structures. Joint positions in **observations and actions** cannot be aligned and unified.
 - The policy should adapt to variation in hand sizes, shapes, ...

Motivation

- > Teleoperation: humans' policy for cross-embodiment grasping
 - A unified embodiment-agnostic policy: human can make decisions **based on visual feedback**, without prior knowledge on the robot embodiment.
 - **Retargeting**: mapping human hand poses to target joint positions for dexterous hands.

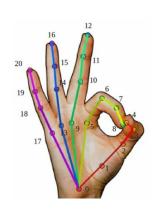


CrossDex: hand pose retargeting

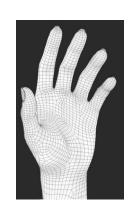
The **MANO** hand model

16 axis angles of human hand joints $\theta \in \mathbb{R}^{48}$ Eigenvector of hand shape $\beta \in \mathbb{R}^{10}$

MANO



21 3D keypoints



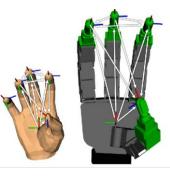
mesh

> Hand pose retargeting

Human hand pose: 21 keypoint positions

Retargeting

Robot hand pose: target joint positions



DexPilot: solve optimization problem

Maximize similarities of relative positions between keypoints

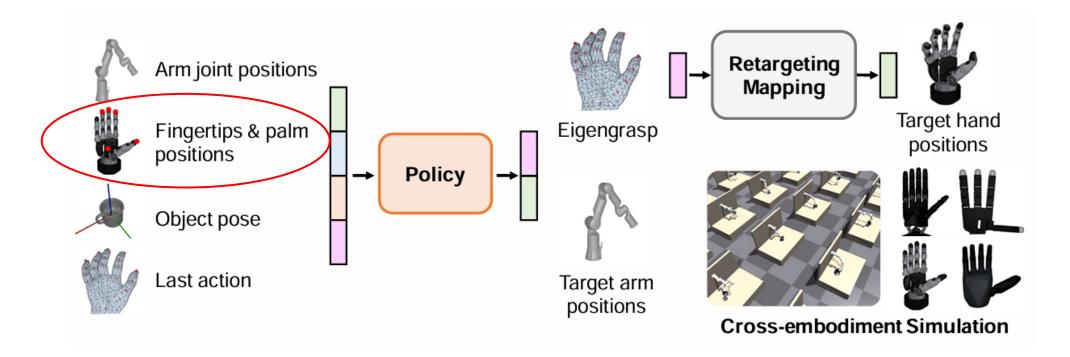
$$egin{aligned} \min_{m{J}_t^h} S\left(f^h(m{J}_t^h), m{x}_t^M
ight) + \|m{J}_t^h - m{J}_{t-1}^h\|^2 \ & ext{s.t.} \quad m{J}_{lower}^h \leq m{J}_t^h \leq m{J}_{upper}^h, \end{aligned}$$

s.t.
$$oldsymbol{J}_{lower}^h \leq oldsymbol{J}_t^h \leq oldsymbol{J}_{upper}^h$$

CrossDex: eigengrasps

- \triangleright If we use human hand axis angles θ as actions: high-dimensional action space, hardcoded joint limits, coupling between joints are not considered, ...
- \triangleright Eigengrasps: apply PCA, use eigenvectors to represent common hand poses $\{e_i\}_{i=1}^k$
- \triangleright Linearly combine the eigengrasps to generate diverse hand poses: $\theta = \sum_{i=1}^k w_i e_i$
- CrossDex action space: use weights for first-k eigengrasps as actions. Use DexPilot to map the human hand poses to dexterous hand poses.

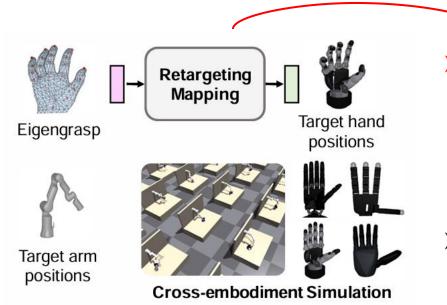
CrossDex: training



- Build parallel simulation in IsaacGym
- > Teacher-student learning
 - > RL: Train a **state-based** policy for each object. Grasp each object given object pose observations.
 - ➤ DAgger: distill all state-based policies into a **vision-based** policy. Grasp any object given point cloud observations.

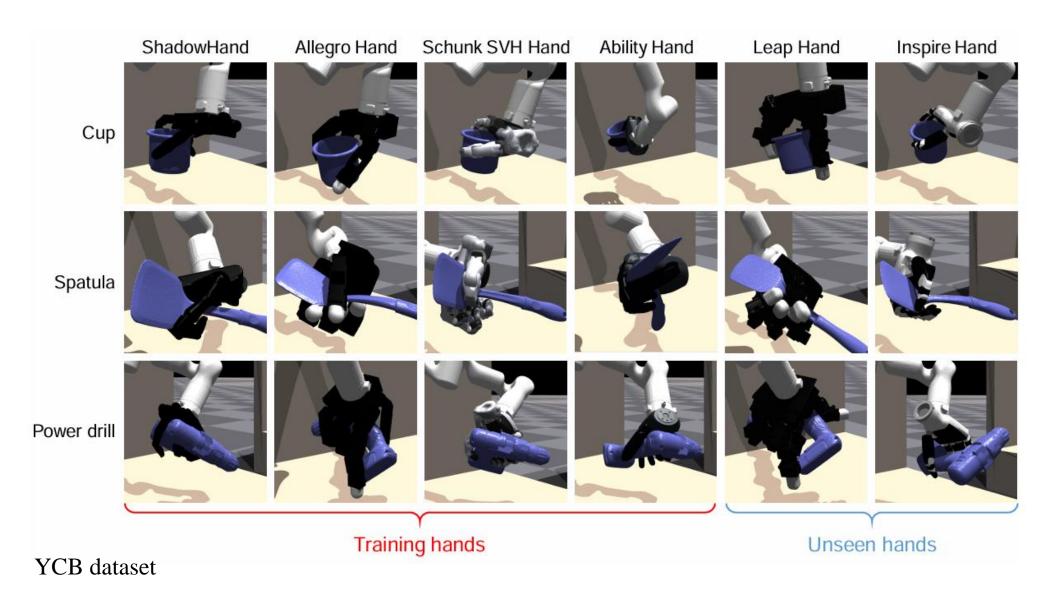
CrossDex: training

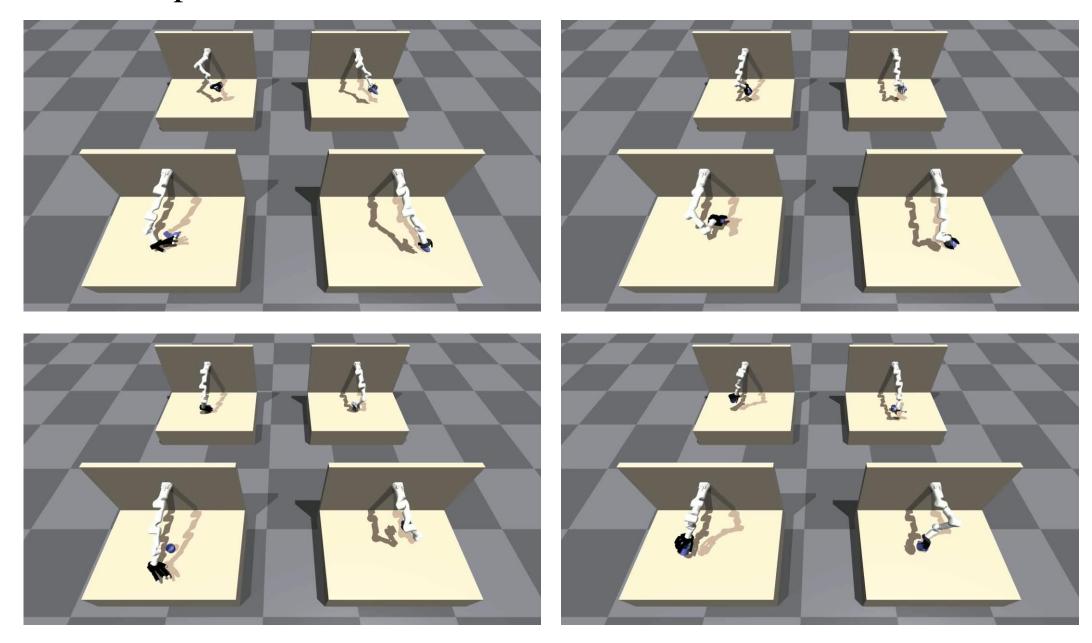
> Optimization-based retargeting: 300 FPS



Train neural networks to fit the retargeting mappings on the hand pose dataset.

➤ IsaacGym simulation: 100000 FPS



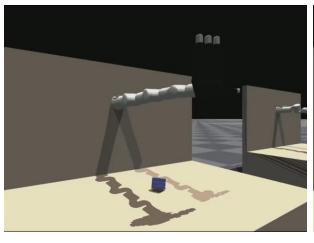


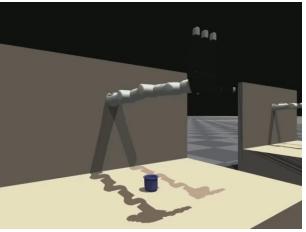
Zero-shot embodiment generalization

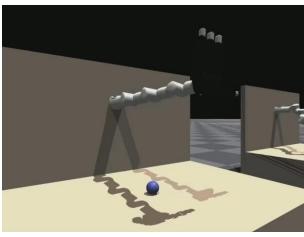
Method	Training hands (State)	Training hands (Vision)	Unseen hands (State)	Unseen hands (Vision)
MT-Raw-OA	0.914 0.823	0.782	0.054	0.162
MT-Raw-A		0.728	0.272	0.210
MT-Raw-O	0.884	0.779	0.046	0.145
CrossDex	0.885	0.800	0.391	0.352

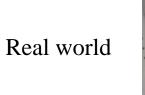
Method	YCB (5 objects, state)	YCB (multi-task, vision)	GRAB (multi-task, vision)
No-Pretrain	$0.758 {\pm} 0.122$	0.436 ± 0.159	0.313 ± 0.373
MT-Raw-OA	0.701 ± 0.002	0.417 ± 0.007	0.651 ± 0.007
MT-Raw-A	0.798 ± 0.002	0.390 ± 0.005	0.655 ± 0.006
MT-Raw-O	0.708 ± 0.014	0.385 ± 0.003	0.616 ± 0.018
CrossDex	0.872 ± 0.013	0.643 ± 0.009	0.740 ± 0.009

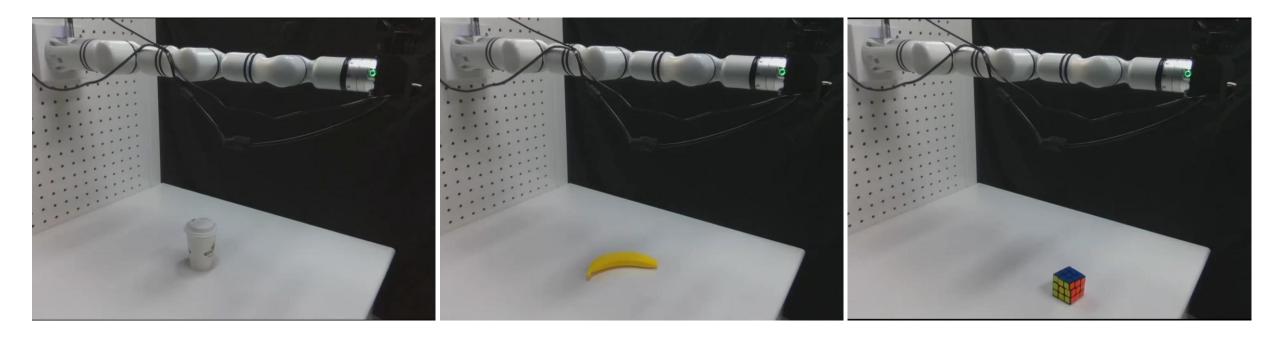
Simulation











Conclusion and limitations

- CrossDex is an initial attempt towards a unified RL policy for various dexterous hands.
- ➤ We propose novel techniques -- eigengrasp action space, retargeting networks, unified observation space to address the problem.
- > Experiments on YCB demonstrates positive transfer in training and generalization to unseen hands.

- ➤ Performance of zero-shot generalization to unseen hands is still quite limited.
 - ➤ Include a wide range of dexterous hand models.
 - > Context-based RL: learn from in-context trial-and-error.
- Extend to other manipulation tasks: object reorientation, functional grasping, ...

Project page: https://sites.google.com/view/crossdex

Code: https://github.com/PKU-RL/CrossDex/

Thank you!