Ahmed H. Salamah ahamsala@uwaterloo.ca

Department of Electrical and Computer Engineering University of Waterloo

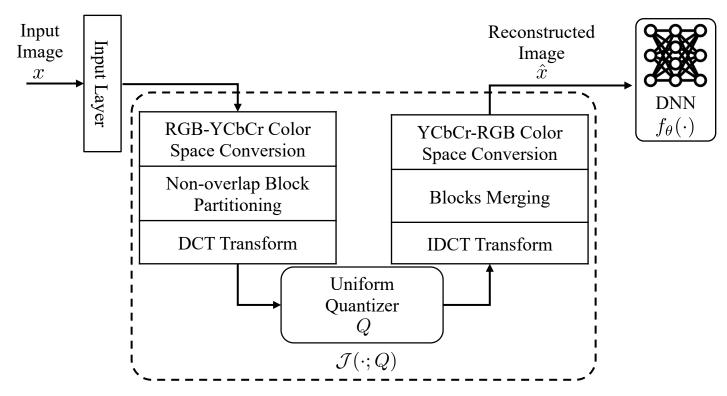
JPEG Inspired Deep Learning

Ahmed H. Salamah¹, Kaixiang Zheng¹, Yiwen Liu & En-Hui Yang

The Thirteenth International Conference on Learning Representations, Singapore, 2025

¹Authors contributed equally.

Introduction



JPEG Compression Pipeline given an underlying model $f_{ heta}$

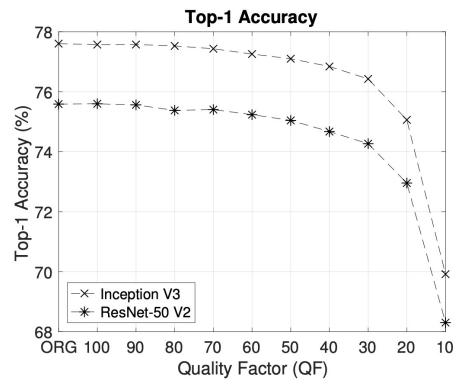
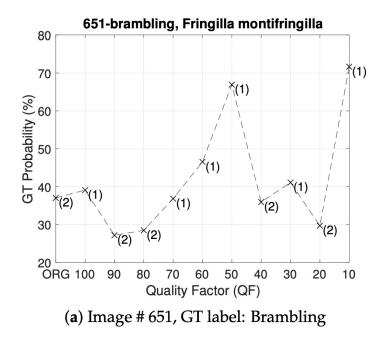
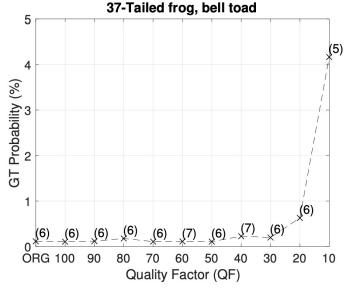


Fig. Top 1 accuracy accuracy degradation phenomenon for Inception V3 and ResNet-50 V2 in the case of the "one QF vs. all images" approach.

- 1. Samuel Dodge and Lina Karam. Understanding how image quality affects deep neural networks. In 2016 eighth international conference on QoMEX, pp. 1–6. IEEE, 2016.
- 2. Zihao Liu, Tao Liu, Wujie Wen, Lei Jiang, Jie Xu, Yanzhi Wang, and Gang Quan. DeepN-JPEG: A deep neural network favorable JPEG-based image compression framework. In Proceedings of the 55th Annual Design Automation Conference, pp. 18. ACM, 2018.
- 3. En-Hui Yang, Hossam Amer, and Yanbing Jiang. Compression helps deep learning in image classification. Entropy, 23(7):881, 2021.

Motivation





(b) Image # 37, GT label: Tailed Frog

Fig. The perspective of one image vs. all QFs—the ranks and probabilities of the GT label of an image across different QFs: (a) Image # 651; and (b) Image # 37.

- 1. En-Hui Yang, Hossam Amer, and Yanbing Jiang. Compression helps deep learning in image classification. Entropy, 23(7):881, 2021.
- 2. Kaixiang Zheng, Ahmed H. Salamah, Linfeng Ye, and En-Hui Yang. Jpeg compliant compression for dnn vision. In 2023 IEEE International Conference on Image Processing (ICIP), pp. 1875–1879, 2023.
- 3. Ahmed H Salamah, Kaixiang Zheng, Linfeng Ye, and En-Hui Yang. Jpeg compliant compression for dnn vision. IEEE Journal on Selected Areas in Information Theory, 3 2024b.

Problem Formulation

In supervised learning, each $x \in \mathcal{X}$ corresponds to a ground truth label $y \in \mathcal{Y}$. Let f_{θ} represent a DNN model with trainable weights θ , and let \mathcal{L} denote the loss function used to train this DNN. In standard DL, the primary objective is to solve the following minimization problem:

$$\min_{\theta} \mathbb{E}[\mathcal{L}(f_{\theta}(x), y)]. \tag{1}$$

In contrast, JPEG-DL tries to improve the performance of DNN by jointly training it with the JPEG operation. As a result, the formulation should be instead:

$$\min_{\theta,Q} \mathbb{E}[\mathcal{L}(f_{\theta}(\mathcal{J}(x;Q)), y)]. \tag{2}$$

However, in order to solve (2) with gradient descent, the key challenge is caused by the non-differentiable quantization operation, which makes the gradients w.r.t. Q almost zero everywhere. To address this issue, we will introduce a differentiable soft quantizer (Q_d) in the next slides, replacing the uniform quantizer (Q_u) used in \mathcal{J} .

Differentiable Soft Quantizer (1/2)

Denote the index set of uniform quantization as

$$\mathcal{A} = \{-L, -L + 1, \dots, 0, \dots, L - 1, L\}.$$

For convenience, \mathcal{A} is also regarded as a vector of length 2L+1. Multiplying \mathcal{A} with a quantization step size q, we get the corresponding reconstruction space

$$\hat{\mathcal{A}} = q \times [-L, -L+1, \dots, 0, \dots, L-1, L].$$

Again, we will regard \hat{A} as both a vector and a set.

To randomly quantize a DCT coefficient z to an element in $\hat{\mathcal{A}}$, we invoke from Yang et~al. a trainable conditional probability mass function (CPMF) $P_{\alpha}(\cdot|z)$ over the reconstruction space $\hat{\mathcal{A}}$ or equivalently the index set \mathcal{A} given z, where $\alpha > 0$ is a trainable parameter:

$$P_{\alpha}(iq|z) = \frac{e^{-\alpha(z-iq)^2}}{\sum_{j \in \mathcal{A}} e^{-\alpha(z-jq)^2}}, \ \forall i \in \mathcal{A}.$$
 (3)

Extend z to a vector of length 2L+1, i.e., $[z]_{2L+1}=[\overbrace{z,\ldots,z}^{2L+1 \text{ times}}]$. Then, the CPMF $P_{\alpha}(\cdot|z)$, regarded as a vector of length 2L+1, can be easily computed via the softmax operation $\sigma(\cdot)$:

$$[P_{\alpha}(\cdot|z)]_{2L+1} = \sigma\left(-\alpha \times \left([z]_{2L+1} - \hat{\mathcal{A}}\right)^{2}\right). \tag{4}$$

Differentiable Soft Quantizer (2/2)

$$P_{\alpha}(iq|z) = \frac{e^{-\alpha(z-iq)^2}}{\sum_{j \in \mathcal{A}} e^{-\alpha(z-jq)^2}}, \ \forall i \in \mathcal{A}.$$
 (3)

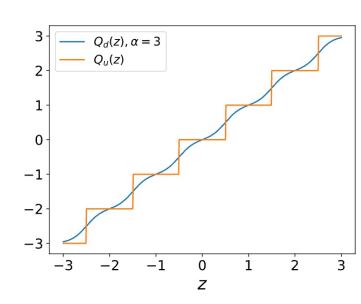
$$[P_{\alpha}(\cdot|z)]_{2L+1} = \sigma\left(-\alpha \times \left([z]_{2L+1} - \hat{\mathcal{A}}\right)^{2}\right) \tag{4}$$

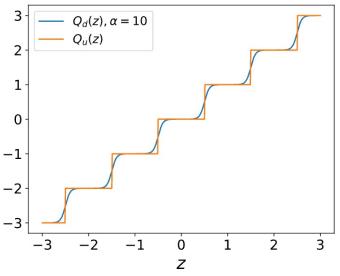
With the CPMF $P_{\alpha}(\cdot|z)$, z is now quantized to each $iq \in \hat{\mathcal{A}}$ with probability $P_{\alpha}(iq|z)$. Note that as $\alpha \to \infty$, $P_{\alpha}(\cdot|z)$ approaches an one-hot vector with probability 1 at the nearest point to z in $\hat{\mathcal{A}}$ and 0 elsewhere. Therefore, the resulting random quantizer effectively functions as the deterministic uniform quantizer $Q_u(z) = \lfloor z/q \rfloor \cdot q$.

Based on the CPMF $P_{\alpha}(\cdot|z)$, we can now define a differentiable soft quantizer Q_d as the conditional expectation of iq given z, i.e.,

$$Q_d(z) = \mathbb{E}[iq|z] = \sum_{i \in \mathcal{A}} P_{\alpha}(iq|z) \cdot iq.$$
 (5)

Similarly, as $\alpha \to \infty$, Q_d also goes to Q_u . On the left, the figures show how the shape of Q_d varies w.r.t α , given a fixed q.





Overall Framework of JPEG-DL

$$\min_{\theta, Q} \mathbb{E}[\mathcal{L}(f_{\theta}(\mathcal{J}(x; Q)), y)] \tag{2}$$

Substituting Q_u in \mathcal{J} , shown in (2), with Q_d , we get a differentiable JPEG layer $\hat{\mathcal{J}}$ parameterized by Q and $\boldsymbol{\alpha}$, where $\boldsymbol{\alpha}=(\boldsymbol{\alpha}_Y,\boldsymbol{\alpha}_C)$. $\boldsymbol{\alpha}_Y=[\alpha_1,\alpha_2,\ldots,\alpha_M]$ and $\boldsymbol{\alpha}_C=[\alpha_{M+1},\alpha_{M+2},\ldots,\alpha_{2M}]$ are α tables for the luminance and chrominance channels respectively, used in conjunction with Q_Y and Q_C to quantize DCT coefficients. Following the proposed soft quantization, we obtain quantized DCT coefficients $\hat{z}_{l,m,n}=Q_d(z_{l,m,n};q_m,\alpha_m)$ for l=1, and $\hat{z}_{l,m,n}=Q_d(z_{l,m,n};q_{M+m},\alpha_{M+m})$ for l=2,3, where $Q_d(z;q,\alpha)$ denotes a differentiable soft quantizer parameterized by a quantization step q and a scaling factor α . Overall, for an input image x, we have $\hat{x}=\hat{\mathcal{J}}(x;Q,\boldsymbol{\alpha})$. Therefore, we can rewrite (2), the JPEG-DL formulation, as

$$\min_{\theta, Q, \alpha} \mathbb{E}[\mathcal{L}(f_{\theta}(\hat{\mathcal{J}}(x; Q, \alpha)), y)], \tag{6}$$

where the expectation can be approximated by the empirical mean over a minibatch in actual training. Thanks to the use of Q_d , (3) can now be solved by gradient descent with ease.

JPEG-DL on CIFAR100 and ImageNet

Table 1: Top-1 validation accuracy (%) for Baseline and JPEG-DL on CIFAR-100. The Baseline results are from Tian et al. (2020). For JPEG-DL, we report the mean and standard deviation of experimental results over three runs.

Method	Res32	Res56	Res110	VGG8	VGG13	MobileNetV2	ShuffleNetV2
Baseline	71.14	72.34	73.79	70.36	73.77	64.6	71.82
JPEG-DL	71.92 ±0.31 (+0.78)	73.39 _{±0.19} (+1.05)	74.46 ±+0.11 (+0.67)	71.10 ±+0.41 (+0.74)	75.32 ±0.10 (+1.55)	65.91±0.11 (+1.31)	73.04±0.16 (+1.22)

Table 3: Top-1 validation accuracy (%) on ImageNet with different model architectures.

Method	SqueezeNetV1.1	Resnet18	Resnet34	
Baseline	57.95	69.75	73.31	
JPEG-DL	58.26 (+0.31)	70.13 (+0.38)	73.54 (+0.23)	

With a trivial increase in complexity (adding 128 parameters), JPEG-DL achieves a gain of 0.31% in top-1 accuracy for SqueezeNetV1.1 compared to the baseline using a single round of Q_d quantization operation. By increasing the number of quantization rounds to five, we observe an additional improvement of 0.20%, leading to a total gain of 0.51% over the baseline. The best results are indicated in bold, and values in parentheses indicate relative accuracy gains over the baseline.

Comparison with more Baselines

Table 6: Top-1 validation accuracy (%) on various fine-grained image classification tasks and model architectures. We report the mean and standard deviation of experimental results over three runs.

Model	Model Method		Dogs	Flowers	Pets	
ResNet-18	Baseline Ballé et al. (2016) Shin & Song (2017) Esser et al. (2019) JPEG-DL	$ \begin{array}{ c c c c c }\hline 54.00{\pm}1.43\\ 50.78{\pm}2.21 & (-3.22)\\ 55.34{\pm}0.14 & (+1.34)\\ 51.58{\pm}0.18 & (-2.42)\\ \hline \textbf{58.81}{\pm}0.12 & (+4.81)\\ \hline \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
DenseNet-121	Baseline Ballé et al. (2016) Shin & Song (2017) Esser et al. (2019) JPEG-DL	$ \begin{array}{ c c c c c }\hline 57.70 \pm 0.44\\ 52.00 \pm 1.41 & (-5.70)\\ 57.19 \pm 0.78 & (-0.51)\\ 56.46 \pm 0.30 & (-1.24)\\ \hline \textbf{61.32} \pm 0.43 & (+3.62)\\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c cccc} 70.26 \pm 0.79 \\ 61.91 \pm 1.88 & (-8.35) \\ 69.95 \pm 1.21 & (-0.31) \\ 69.58 \pm 0.59 & (-0.68) \\ \textbf{75.90} \pm 0.68 & (+5.64) \\ \end{array}$	

Layer Replacement

Table 7: Top-1 validation accuracy (%) on various fine-grained image classification tasks and model architectures. We report the mean and standard deviation of experimental results over three runs.

Method	CUB-200	Dogs	Flowers	Pets	
JPEG-DL (Input Layer)	58.81±0.12 (+4.81)	65.57±0.37 (+1.86)	68.76±0.57 (+11.63)	74.84±0.66 (+4.47)	
JPEG-DL (1 st Conv Layer)	59.27±0.04 (+5.27)	65.33±0.07 (+1.62)	72.10±1.46 (+14.97)	76.11±0.37 (+5.74)	

	layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
JPEG layer →	conv1	112×112	7×7 , 64, stride 2				
	65				3×3 max pool, stric	le 2	
	conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
	conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
	conv4_x	14×14	$\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times6$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$
	conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$
		1×1		ave	erage pool, 1000-d fc,	softmax	
	FLO	OPs	1.8×10^9	3.6×10^{9}	3.8×10^9	7.6×10^9	11.3×10 ⁹

Robustness

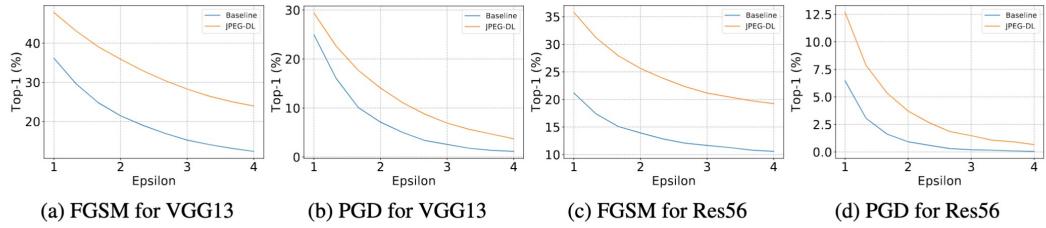


Figure 3: Evaluate the adversarial robustness of JPEG-DL models in comparison to standard DNN on VGG13 and Res56 for CIFAR-100 against FGSM and PGD attacks.

Meet us ...

