Boosting Ray Search Procedure of Hard-label Attacks with Transfer-based Priors

Chen Ma^{1,2}, Xinjie Xu¹, Shuyu Cheng³, Qi Xuan^{1,2}

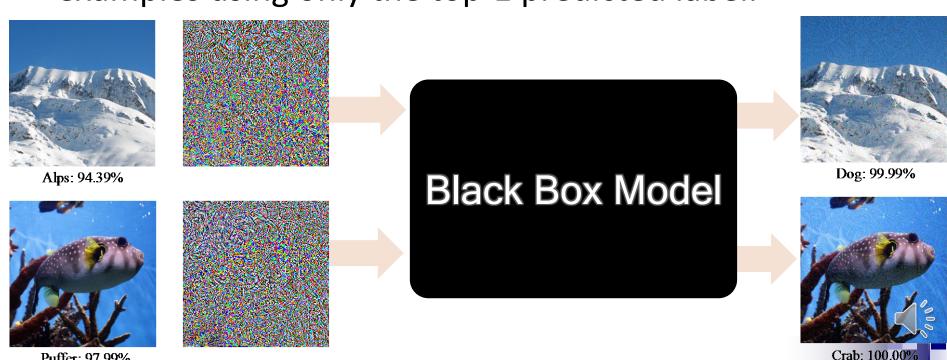
Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China
² Binjiang Institute of Artificial Intelligence, ZJUT, Hangzhou, China

³ JQ Investments, Shanghai, China

machenstar@163.com

Background: black-box adversarial attack

- An adversarial example should be visually indistinguishable from the corresponding normal one, yet it is misclassified by the target model.
- Hard-label adversarial attacks aim to generate adversarial examples using only the top-1 predicted label.



Black-box Attackss

- Transfer-based
 - Generate adversarial examples against white-box models, and leverage transferability for attacks
 - □ Require no knowledge of the target model, no queries
 - □ Issue: require white-box surrogate models (datasets), it assumes this model and the target model are similar.
- Query-based
 - □ Get some information from the target model directly, through queries
 - Score-based: the adversary knows the output logits of the target model
 - Decision-based: the adversary only knows the top-1 predicted labels
 - □ Goal: save queries and reduce the distortions of examples

Hard-label Attacks

Goal: For a classifier f(x): $\mathbb{R}^d \to \mathbb{R}^K$ and input-label pair (x, y), the hard-label black-box attack generates an adversarial example x_{adv} using only the classifier's top-1 predicted label:

$$\hat{y} = \operatorname{argmax}_{i} f(x_{adv})_{i}$$
, $i \in \{1, ..., K\}$

 $= x^{adv}$ can be generated by solving

$$x^{\text{adv}} = \underset{x^{\text{adv}}}{\operatorname{argmin}} d(x^{\text{adv}}, x) \text{ s.t. } \phi(x_{\text{adv}}) = 1$$

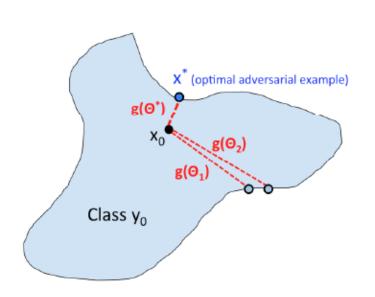
where
$$\phi(x_{\text{adv}}) = \begin{cases} 1 \text{ if } \hat{y} = y_{adv} \text{ in the targeted attack} \\ \text{or } \hat{y} \neq y \text{ in the untargeted attack} \\ 0 \text{ otherwise} \end{cases}$$

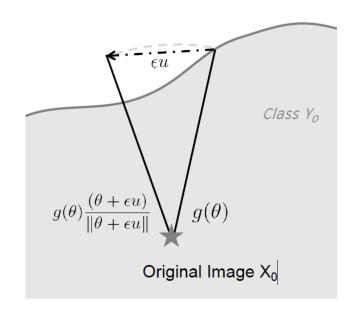
i.e., $\phi(x_{adv})$ indicates an successful attack.

Prob

0.9 0.04

A typical hard-label attack: Sign-OPT





Untargeted attack:
$$g(\theta) = \min_{\lambda > 0} \lambda$$
 s.t $f(x_0 + \lambda \frac{\theta}{||\theta||}) \neq y_0$

Targeted attack (given target
$$t$$
): $g(\theta) = \min_{\lambda > 0} \lambda$ s.t $f(x_0 + \lambda \frac{\theta}{||\theta||}) = t$

$$\operatorname{sign}(g(\boldsymbol{\theta} + \epsilon \mathbf{u}) - g(\boldsymbol{\theta})) = \begin{cases} +1, & f(x_0 + g(\boldsymbol{\theta}) \frac{(\boldsymbol{\theta} + \epsilon \mathbf{u})}{\|\boldsymbol{\theta} + \epsilon \mathbf{u}\|}) = y_0, \\ -1, & \text{Otherwise.} \end{cases}$$

Acquisition of Transfer-based Priors

$$h(\theta_{0} + \Delta\theta_{2}, g_{\hat{f}}(\theta_{0})) = 0$$

$$= \hat{f}_{y} - \max_{j \neq y} \hat{f}_{j} > 0$$

$$g_{\hat{f}}(\theta_{0} + \Delta\theta_{1}) - g_{\hat{f}}(\theta_{0}) = \hat{f}_{y} - \max_{j \neq y} \hat{f}_{j} < 0$$

$$g_{\hat{f}}(\theta_{0} + \Delta\theta_{2}) - g_{\hat{f}}(\theta_{0}) > 0$$

$$\chi$$

$$\text{non-adversarial region with label } y$$

$$\text{adversarial region}$$

$$(1) \text{ When } g_{\hat{f}}(\theta) \downarrow \text{ with } \Delta\theta_{1}, h(\theta, \lambda) \downarrow \text{ as well.}$$

(2) When $a_{ij}(0) \uparrow a_{ij}(0) \downarrow a_{ij}(0) \downarrow a_{ij}(0)$

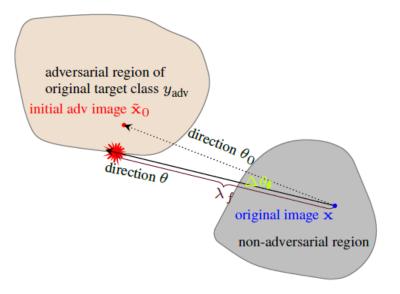
(2) When $g_{\hat{f}}(\theta) \uparrow \text{ with } \Delta\theta_2, h(\theta, \lambda) \uparrow \text{ as well.}$

To approximate the gradient of the non-differentiable function $g_{\hat{f}}(\theta_0)$, we introduce a surrogate loss $h(\theta,\lambda)$ by fixing $\lambda_0=g_{\hat{f}}(\theta_0)$, where \hat{f} denotes the surrogate model. This yields a transfer-based prior via $\nabla g_{\hat{f}}(\theta_0) \propto \nabla_{\theta} h(\theta_0,\lambda_0)$. The surrogate loss $h(\theta,\lambda)$ is defined as

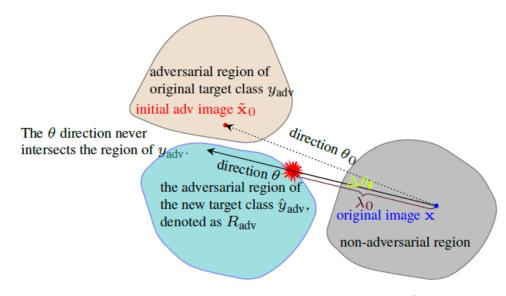
$$h(\theta,\lambda) \coloneqq \begin{cases} \hat{f}_y - \max_{j \neq y} \hat{f}_j, & \text{if untargeted attack,} \\ \max_{j \neq \hat{y}_{\text{adv}}} \hat{f}_j - \hat{f}_{\hat{y}_{\text{adv}}}, & \text{if targeted attack,} \end{cases}$$

Acquisition of Transfer-based Priors

For targeted attacks, the transfer-based priors are more difficult to obtain.

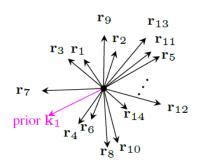


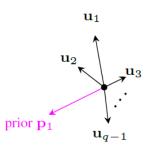
(a) The θ direction in the target model f.



(b) The θ direction in the surrogate model f.

The Optimization of Ray Directions





- (a) Get prior $\mathbf{k_1}$ and sample $\mathbf{r_i}$.
- (b) Orthonormal basis.
- (c) Estimate a sign-based \mathbf{v}_{\perp} . (d) Estimate \mathbf{v}^* with \mathbf{v}_{\perp} and \mathbf{p}_1 .

1. Prior-Sign-OPT

$$\mathbf{v}^* = \sum_{i=1}^{s} \operatorname{sign}(g(\theta + \sigma \mathbf{p}_i) - g(\theta)) \cdot \mathbf{p}_i + \sum_{i=1}^{q-s} \operatorname{sign}(g(\theta + \sigma \mathbf{u}_i) - g(\theta)) \cdot \mathbf{u}_i.$$

2. Prior $\frac{1}{s}$ OPT

$$\mathbf{v}^* = \sum_{i=1}^s \frac{g(\theta + \sigma \mathbf{p}_i) - g(\theta)}{\sigma} \cdot \mathbf{p}_i + \frac{g(\theta + \sigma \overline{\mathbf{v}_\perp}) - g(\theta)}{\sigma} \cdot \overline{\mathbf{v}_\perp},$$

where $\overline{\mathbf{v}_{\perp}}$ is the ℓ_2 normalization of \mathbf{v}_{\perp} , and \mathbf{v}_{\perp} is obtained by:

$$\mathbf{v}_{\perp} = \sum_{i=1}^{q-s} \operatorname{sign}(g(\theta + \sigma \mathbf{u}_i) - g(\theta)) \cdot \mathbf{u}_i.$$

Algorithm 1 Prior-Sign-OPT and Prior-OPT attack

Input: benign image \mathbf{x} , objective function $g(\cdot)$, attack success indicator $\Phi(\cdot)$ defined in Eq. (2), iteration T, method $m \in \{ \text{Prior-OPT}, \text{Prior-Sign-OPT} \}$, the initialization strategy of untargeted attacks $\in \{\theta_0^{\text{PGD}}, \theta_0^{\text{RND}} \}$, the maximum gradient norm \mathbf{g}_{max} , attack norm $p \in \{2, \infty\}$, surrogate models $\mathbb{S} = \{\hat{f}_1, \cdots, \hat{f}_s\}$.

Output: adversarial example \mathbf{x}^* that satisfies $\Phi(\mathbf{x}^*) = 1$.

 $\tilde{\mathbf{x}}_0 \leftarrow \operatorname{PGD}(\mathbf{x}, \hat{f}_1)$ if initialization $= \theta_0^{\operatorname{PGD}}$, otherwise a random $\tilde{\mathbf{x}}_0$ that satisfies $\Phi(\tilde{\mathbf{x}}_0) = 1$ is selected, which is $\theta_0^{\operatorname{RND}}$ strategy; \triangleright the targeted attack selects an image from the target class as $\tilde{\mathbf{x}}_0$.

$$\theta_0 \leftarrow \frac{\tilde{\mathbf{x}}_0 - \mathbf{x}}{\|\tilde{\mathbf{x}}_0 - \mathbf{x}\|}, \quad d_0 \leftarrow \|\tilde{\mathbf{x}}_0 - \mathbf{x}\|_p;$$

for t in $1, \ldots, T$ do

for \hat{f}_i in \mathbb{S} do

$$\lambda_{t-1} \leftarrow \text{BinarySearch}(\mathbf{x}, \theta_{t-1}, \hat{f}_i, \Phi);$$

 $\mathbf{k}_i \leftarrow \nabla_{\theta} h(\theta_{t-1}, \lambda_{t-1})$ on \hat{f}_i with λ_{t-1} treated as a constant in differentiation; \triangleright obtain s transfer-based priors

end for

 $\mathbf{r}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \text{ for } i = 1, \cdots, q - s;$

 $\mathbf{p}_1, \cdots, \mathbf{p}_s, \mathbf{u}_1, \cdots, \mathbf{u}_{q-s} \leftarrow \text{Gram-Schmidt Orthogonalization}(\{\mathbf{k}_1, \cdots, \mathbf{k}_s, \mathbf{r}_1, \cdots, \mathbf{r}_{q-s}\});$

Estimate a gradient \mathbf{v}^* using Eq. (7) if m = Prior-Sign-OPT, otherwise using Eq. (13);

 $\mathbf{v}^* \leftarrow \text{ClipGradNorm}(\mathbf{v}^*, \mathbf{g}_{\text{max}});$

 $\eta^* \leftarrow \text{LineSearch}(\mathbf{x}, \mathbf{v}^*, \Phi, d_{t-1}, \theta_{t-1}); \triangleright \text{search step size.}$

$$\theta_t \leftarrow \theta_{t-1} - \eta^* \mathbf{v}^*, \quad \theta_t \leftarrow \frac{\theta_t}{\|\theta_t\|};$$

$$d_t \leftarrow \|g(\theta_t) \cdot \theta_t\|_p;$$

end for

return $\mathbf{x}^* \leftarrow \mathbf{x} + g(\theta_T) \frac{\theta_T}{\|\theta_T\|};$

Theory (part I)

Theorem 3.2. For the Sign-OPT estimator approximated by Eq. (6) (defined as Eq. (44)), we let $\gamma := \overline{\mathbf{v}}^{\top} \overline{\nabla g(\theta)}$ be its cosine similarity to the true gradient, where $\overline{\mathbf{v}} := \frac{\mathbf{v}}{\|\mathbf{v}\|}$, then

$$\mathbb{E}[\gamma] = \sqrt{q} \frac{\Gamma(\frac{d}{2})}{\Gamma(\frac{d+1}{2})\sqrt{\pi}},\tag{9}$$

$$\mathbb{E}[\gamma^2] = \frac{1}{d} \left(\frac{2}{\pi} (q - 1) + 1 \right). \tag{10}$$

The proof of Theorem 3.2 is included in Appendix C.1. For Prior-Sign-OPT, we have Theorem 3.3. Theorem 3.3. For the Prior-Sign-OPT estimator approximated by Eq. (6) (defined as Eq. (82)), we let $\gamma := \overline{\mathbf{v}^*}^\top \overline{\nabla g(\theta)}$ be its cosine similarity to the true gradient, where $\overline{\mathbf{v}^*} := \frac{\mathbf{v}^*}{\|\mathbf{v}^*\|}$, then

$$\mathbb{E}[\gamma] = \frac{1}{\sqrt{q}} \left[\sum_{i=1}^{s} |\alpha_i| + (q-s) \sqrt{1 - \sum_{i=1}^{s} \alpha_i^2} \cdot \frac{\Gamma(\frac{d-s}{2})}{\Gamma(\frac{d-s+1}{2})\sqrt{\pi}} \right],\tag{11}$$

$$\mathbb{E}[\gamma^2] = \frac{1}{q} \left[\left(\sum_{i=1}^s |\alpha_i| \right)^2 + \frac{q-s}{d-s} \left(\frac{2}{\pi} (q-s-1) + 1 \right) \left(1 - \sum_{i=1}^s \alpha_i^2 \right) \right]$$

$$+2\left(\sum_{i=1}^{s}|\alpha_{i}|\right)(q-s)\sqrt{1-\sum_{i=1}^{s}\alpha_{i}^{2}}\cdot\frac{\Gamma(\frac{d-s}{2})}{\Gamma(\frac{d-s+1}{2})\sqrt{\pi}}\right],\tag{12}$$

where $\alpha_i := \mathbf{p}_i^\top \overline{\nabla g(\theta)}$ is the cosine similarity between the *i*-th prior and the true gradient.

Theory (part II)

Theorem 3.4. For the Prior-OPT estimator approximated by Eq. (6) (defined as Eq. (114)), we let $\gamma := \overline{\mathbf{v}^*}^\top \overline{\nabla g(\theta)}$ be its cosine similarity to the true gradient, where $\overline{\mathbf{v}^*} := \frac{\mathbf{v}^*}{\|\mathbf{v}^*\|}$, then

$$\mathbb{E}[\gamma] \ge \sqrt{\sum_{i=1}^{s} \alpha_i^2 + \frac{(q-s)(1-\sum_{i=1}^{s} \alpha_i^2)}{\pi} \left(\frac{\Gamma(\frac{d-s}{2})}{\Gamma(\frac{d-s+1}{2})}\right)^2},\tag{1}$$

$$\mathbb{E}[\gamma] \le \sqrt{\sum_{i=1}^s \alpha_i^2 + \frac{1}{d-s} \left(\frac{2}{\pi}(q-s-1) + 1\right) \left(1 - \sum_{i=1}^s \alpha_i^2\right)},$$

$$\mathbb{E}[\gamma^2] = \sum_{i=1}^s \alpha_i^2 + \frac{1}{d-s} \left(\frac{2}{\pi} (q-s-1) + 1 \right) \left(1 - \sum_{i=1}^s \alpha_i^2 \right),$$

where $\alpha_i := \mathbf{p}_i^\top \overline{\nabla g(\theta)}$ is the cosine similarity between the *i*-th prior and the true gradient.

Experimental Results

Target Model	Method	Untargeted Attack					Targeted Attack						
C		@1K	@2K	@5K	@8K	@10K	@1K	@2K		@8K		@15K	@20K
	HSJA (Chen et al., 2020)	75.392	44.530	20.567	14.194	11.645	95.876	79.001	52.176	39.190	32.951	24.546	19.522
	TA (Ma et al., 2021b)	67.496	42.233	20.352	14.175	11.694	78.883	61.990	40.669	31.506	27.111	21.079	17.319
	G-TA (Ma et al., 2021b)	67.842	41.946	19.962	13.865	11.448	79.297	62.291	40.529	30.941	26.427	20.268	16.569
	Sign-OPT (Cheng et al., 2020)			18.258		8.786	80.366	65.200	42.866	32.104	27.526	20.394	16.281
Inception-v4	SVM-OPT (Cheng et al., 2020)	89.863	47.914	18.297	11.091	8.839	79.807	65.590	43.426	33.090	28.797	22.354	18.795
	GeoDA (Rahmati et al., 2020)	29.157	20.119	12.487	11.010	9.688	-	-	-	-	-	-	-
	Evolutionary (Dong et al., 2019)	61.966	42.665	20.815	13.382	10.839	81.761	65.060	43.021	32.120	27.385	19.942	15.610
	SurFree (Maho et al., 2021)	51.685		22.845			84.925	74.887	55.991	44.475	39.004	29.354	23.153
	Triangle Attack (Wang et al., 2022)	27.217		23.743			-	-	-	-	-	-	-
	SQBA _{IncResV2} (Park et al., 2024)		19.035		8.432	7.417	-	-	-	-	-	-	-
	SQBA _{Xception} (Park et al., 2024)		17.424		8.036	7.115	-	-	-	-	-	-	-
	BBA _{IncResV2} (Brunner et al., 2019)			18.757			66.746	56.283	41.324		30.942	25.757	22.630
	BBA _{Xception} (Brunner et al., 2019)						63.069	53.363	39.740		30.221	25.438	22.561
	Prior-Sign-OPT _{IncResV2}			12.835	7.365	5.842	74.597	55.421	31.856			14.361	
	Prior-Sign-OPT _{IncRes} V2&Xception		37.099	9.058	5.195	4.199	69.526	49.368	26.882	19.324	16.697	12.821	10.769
	Prior-Sign-OPT _{θ_0^{PGD} + IncResV2}		15.347	8.074	5.729	4.863	-	-	-	-	-	-	-
	Prior-OPT _{IncResV2}		18.135	5.718	4.451	4.027		49.842			25.281	21.837	19.800
	Prior-OPT _{IncResV2&Xception}		13.418	3.919	3.321	3.119	60.211	42.631	27.547	23.011	21.441	19.193	17.983
	Prior-OPT $_{\theta_0^{\text{PGD}} + \text{IncResV2}}$	22.852	12.194	6.568	5.114	4.548	-	-	-	-	-	-	-
ViT	HSJA (Chen et al., 2020)	37.813	19.386	9.031	6.604	5.637	61.491	44.853	23.947	16.926	14.152	10.791	8.922
	TA (Ma et al., 2021b)	37.923	19.867	9.078	6.636	5.674	52.110	36.455	20.536	15.145	12.885	10.158	8.609
	G-TA (Ma et al., 2021b)		19.347	8.948	6.496	5.643	52.550	36.720	20.857	15.436	13.255	10.490	8.933
	Sign-OPT (Cheng et al., 2020)		25.290	8.559	5.482	4.572				16.541			8.267
	SVM-OPT (Cheng et al., 2020)		26.580	9.242	5.988	5.070	56.002	41.899	23.909	17.273	14.848	11.739	10.320
	GeoDA (Rahmati et al., 2020)		12.904	8.039	7.153	6.313	-	-	-	-	-	-	-
	Evolutionary (Dong et al., 2019)			11.925	7.974	6.719	57.141	40.187	21.782	15.191	12.795	9.677	8.311
	SurFree (Maho et al., 2021)			10.194		6.303	70.337	53.129	30.054	20.595	16.908	11.794	9.204
	Triangle Attack (Wang et al., 2022)		12.144	11.064		10.097	-	-	-	-	-	-	-
	SQBA _{ResNet50} (Park et al., 2024)		14.004	7.738	5.861	5.201	-	-	-	-	-	-	-
	SQBA _{ConViT} (Park et al., 2024)	12.886	9.762	6.240	4.947	4.452	12 221	22.265	-	17 605	16.046	10.706	10.460
	BBA _{ResNet50} (Brunner et al., 2019)			12.580		9.567		33.365	21.889				12.463
	BBA _{ConViT} (Brunner et al., 2019)		16.153		9.193	8.595	45.588	35.227			16.614	14.028	12.623
	Prior-Sign-OPT _{ResNet50}		27.953	9.474	5.872	4.850	55.095		22.354		13.201	9.789	8.048
	Prior-Sign-OPT _{ResNet50&ConViT}		23.869	7.327	4.694	3.967	53.925	38.418	20.673	14.422	12.153	9.090	7.544
	Prior-Sign-OPT _{θ_0^{PGD} + ResNet50}		18.425	7.848	5.175	4.331	-	-	-	-	-	-	-
	Prior-OPT _{ResNet50}		22.704	8.848	6.024	5.195		40.930		18.117			11.070
	Prior-OPT _{ResNet50&ConViT}		11.287	4.929	3.937	3.609	53.369	40.002	24.706	19.148	17.116	14.114	12.650
	Prior-OPT $_{\theta_0^{\text{PGD}} + \text{ResNet50}}$	29.099	17.754	8.208	5.782	5.009	-	-	-	-	-	-	-

Table 2: Mean ℓ_2 distortions of the different numbers of priors on the ImageNet dataset.

Method	Priors	Target Model: ResNet-101 ¹					Ta	ırget Mo	Target Model: GC ViT ²							
		@1K	@2K	@5K	@8K	@10K	@1K	@2K	@5K	@8K	@10K	@1K	@2K	@5K	@8K	@10K
Sign-OPT	no prior	37.248	21.235	8.982	5.811	4.754	86.373	53.399	20.686	12.406	9.899	57.903	35.762	14.763	9.047	7.185
Prior-Sign-OPT	1 prior	34.150	18.733	6.111	3.718	3.019	84.124	52.882	20.344	11.880	9.254	57.171	36.949	14.963	8.931	6.899
	2 priors	32.848	17.548	5.121	3.136	2.593	77.459	43.062	13.614	7.903	6.331	54.896	32.418	11.012	6.651	5.342
	3 priors	31.156	15.455	4.074	2.527	2.122	73.110	37.852	10.264	5.939	4.778	52.744	28.939	8.707	5.245	4.215
	4 priors	29.984	14.707	3.698	2.333	1.989	70.246	34.470	8.526	5.066	4.169	50.256	26.027	6.435	3.804	3.212
	5 priors	29.601	14.195	3.573	2.275	1.951	67.616	32.225	7.321	4.219	3.467	48.935	24.821	6.123	3.601	2.893
Prior-OPT	1 prior	18.355	7.100	2.840	2.324	2.158	69.432	39.447	16.536	11.241	9.625	50.467	29.091	11.537	7.311	5.948
	2 priors	17.373	6.465	2.454	2.096	1.979	41.152	17.977	7.289	5.453	4.896	36.055	16.176	6.094	4.413	3.747
	3 priors	15.373	5.350	1.919	1.714	1.653	36.636	13.877	5.166	4.008	3.687	33.181	13.005	4.702	3.644	3.264
	4 priors	15.422	5.220	1.849	1.654	1.596	38.343	12.650	3.784	3.027	2.850	34.396	10.994	3.047	2.356	2.171
	5 priors	15.556	5.395	1.881	1.672	1.605	37.712	12.070	3.488	2.747	2.577	33.351	10.369	2.921	2.329	2.159

 $^{^{1}}$ Five surrogate models: ResNet-50, SENet-154, ResNeXt-101 (64 \times 4d), VGG-13, SqueezeNet v1.1

² Five surrogate models: ResNet-50, ConViT, CrossViT, MaxViT, ViT

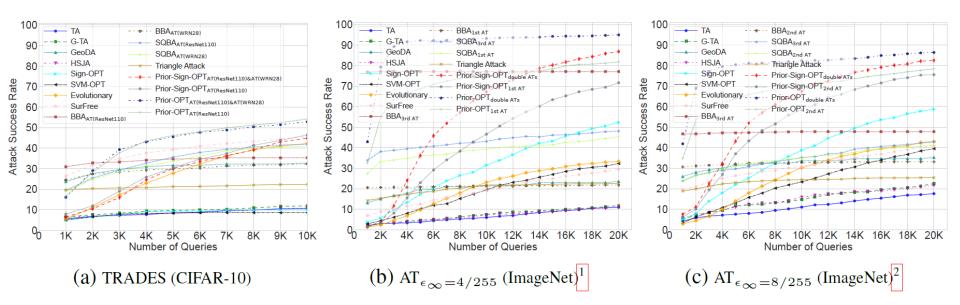
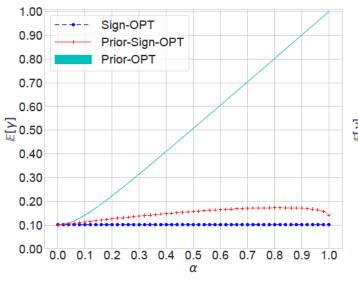
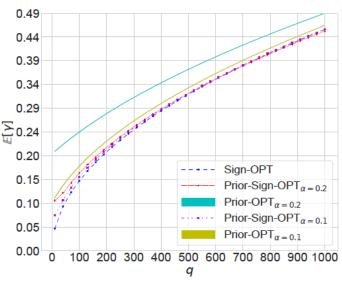


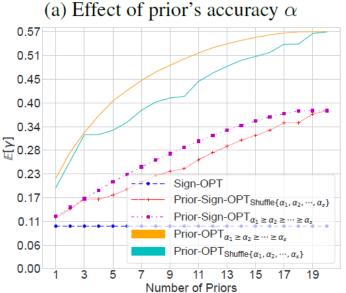
Figure 4: Attack success rates of untargeted attacks with ℓ_2 norm constraint against defense models.

Comprehensive Understanding

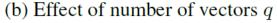
70

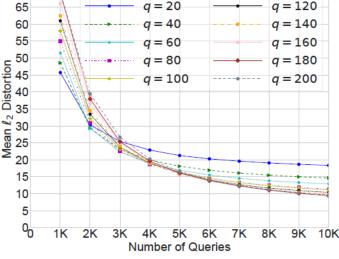






(c) Effect of number of priors





Thanks for your listening!

