Automated Design of Agentic Systems (ADAS)

Shengran Hu, Cong Lu, Jeff Clune

ICLR 2025

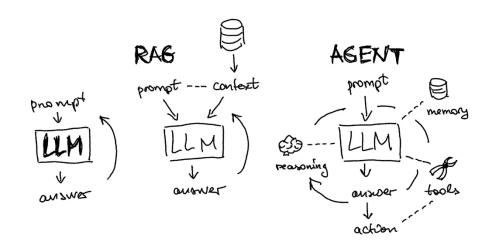
Automated Design of Agentic Systems

Shengran Hu^{1,2}

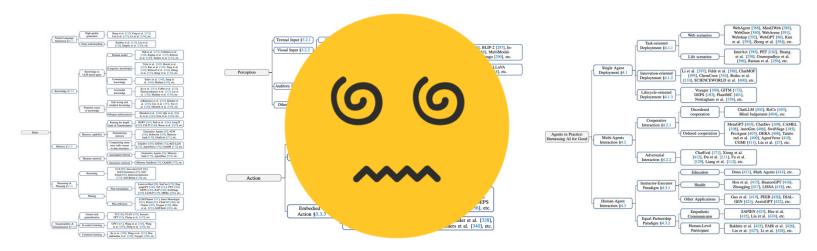
Cong Lu^{1,2}

¹University of British Columbia ²Vector Institute ³Canada CIFAR AI Chair

Jeff Clune^{1,2,3}

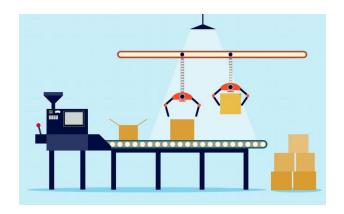


Al Agents

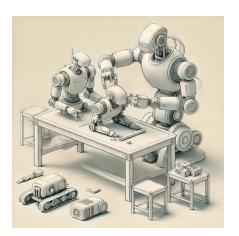

- Agentic Systems powered by Foundation Models (FMs)
 - solve tasks by planning, using tools, and carrying out multiple, iterative steps of processing

(Alex Honchar, 2024)

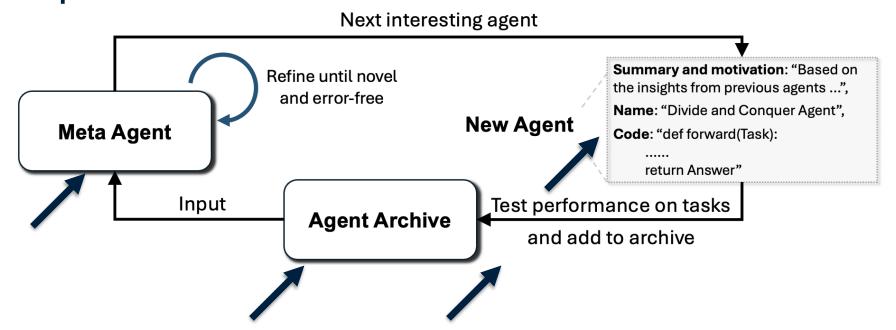
Al Agents


- Designing agents requires a significant amount of manual effort
 - Tuning prompts, tools, workflows, etc.

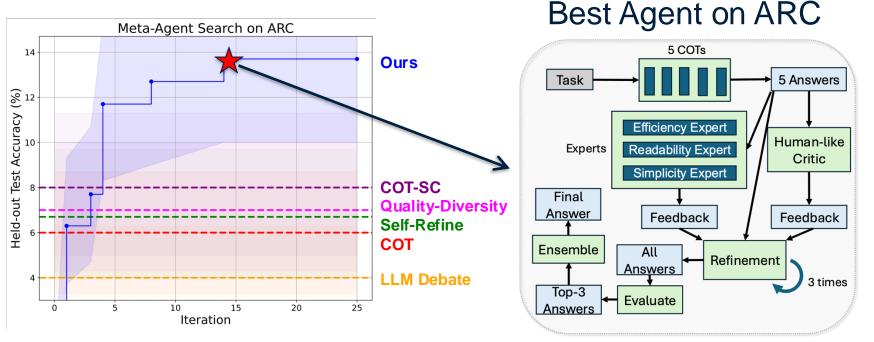
Partial list of existing building blocks, applications, agent designs, etc. (Xi et al., 2023)


Automated Design of Agentic Systems (ADAS)

- Automated Design of Agentic Systems (ADAS)
 - Saving human effort
 - Faster path for agent development
 - Invent new building blocks
 - Design agents for specific tasks


Automated Design of Agentic Systems (ADAS)

- Defining agent in code
 - Turning Completeness → ANY possible agents
 - V.s. Prior Work: Prompt optimization / pre-defined graphs
- Use a "meta" agent to programming new agents.
 - Utilizing FM's prior in coding and agent itself


Meta Agent Search

The first ADAS algorithm that enables complete design in code space

ARC challenge

Meta Agent Search outperform SOTA hand-designed agents

Structured Feedback and Ensemble Agent

Reasoning and Problem-Solving Domains

Meta Agent Search outperform SOTA hand-designed agents

Agent Name	F1 Score	Accuracy (%)							
rigent runic	Reading Comprehension	Math	Multi-task	Science					
State-of-the-art Han e-designed Agents									
Chain-of-Thought (Wei et al., 2022)	54.2 ± 0.9	28.0 ± 3.1	5.4 ± 3.3	24.2 ± 3.1					
COT-SC (Wang et al., 2023b)	64.4 ± 0.8	28.2 ± 3.1	65.9 ± 3.2	30.5 ± 3.2					
Self-Refine (Madaan et al., 2024)	59.2 ± 0.9	27.5 ± 3.1	63.5 ± 3.4	31.6 ± 3.2					
LLM Debate (Du et al., 2023)	60.6 ± 0.9	39.0 ± 3.4	65.6 ± 3.3	31.4 ± 3.2					
Step-back Abstraction (Zheng et al., 2023)	60.4 ± 1.0	31.1 ± 3.2	65.1 ± 3.3	26.9 ± 3.0					
Quality-Diversity (Lu et al., 2024c)	61.8 ± 0.9	23.8 ± 3.0	65.1 ± 3.3	30.2 ± 3.1					
Role Assignment (Xu et al., 2023)	65.8 ± 0.9	30.1 ± 3.2	64.5 ± 3.3	31.1 ± 3.1					
Automated Design of Agentic Systems on Different Domains									
Best Agents from Meta Agent Search	79.4 ± 0.8	53.4 ± 3.5	69.6 ± 3.2	34.6 ± 3.2					

Transferability and Generalizability Non-math domains

Transfer to Math and Non-Math Domains Math domains

Agent Name	Accura (%)			1 Score				
	MGSM	GSM8K	GSM-Hard	MMLU	DROP			
Manually Designed Agents								
Chain-of-Thought (Wei et al., 2022)	28.0 ± 3.1	34.9 ± 3.2	15.0 ± 2.5	65.4 ± 3.3	64.2 ± 0.9			
COT-SC (Wang et al., 2023b)	28.2 ± 3.1	37.8 ± 3.4	15.5 ± 2.5	$\textbf{65.9} \pm \textbf{3.2}$	64.4 ± 0.8			
Self-Refine (Madaan et al., 2024)	27.5 ± 3.1	38.9 ± 3.4	15.1 ± 2.4	63.5 ± 3.4	59.2 ± 0.9			
LLM Debate (Du et al., 2023)	39.0 ± 3.4	$\textbf{43.6} \pm \textbf{3.4}$	17.4 ± 2.6	65.6 ± 3.3	60.6 ± 0.9			
Step-back Abstraction (Zheng et al., 2023)	31.1 ± 3.2	31.5 ± 3.3	12.2 ± 2.3	65.1 ± 3.3	60.4 ± 1.0			
Quality-Diversity (Lu et al., 2024c)	23.8 ± 3.0	28.0 ± 3.1	14.1 ± 2.4	65.1 ± 3.1	61.8 ± 0.9			
Role Assignment (Xu et al., 2023)	30.1 ± 3.2	37.0 ± 3.4	$\boldsymbol{18.0 \pm 2.7}$	64.5 ± 3.3	$\textbf{65.8} \pm \textbf{0.9}$			
Top Agents Searched on MGSM (M	(lath)	Transferred within Math Domains		Transferred beyond Math Domains				
Dynamic Role-Playing Architecture	$\textbf{53.4} \pm \textbf{3.5}$	69.5 ± 3.2	31.2 ± 3.2	62.4 ± 3.4	70.4 ± 0.9			
Structured Multimodal Feedback Loop	50.2 ± 3.5	64.5 ± 3.4	30.1 ± 3.2	$\textbf{67.0} \pm \textbf{3.2}$	70.4 ± 0.9			
Interactive Multimodal Feedback Loop	47.4 ± 3.5	64.9 ± 3.3	27.6 ± 3.2	64.8 ± 3.3	$\textbf{71.9} \pm \textbf{0.8}$			

Future Work and Conclusion

- Future Work
 - Safety in ADAS
- ADAS: towards automated design of agentic systems
 - From hand-crafted solutions to learned solutions
 - Faster and better approach to build agentic systems
- Meta Agent Search: The first ADAS algorithm that enables complete design in code space
 - Discover high-performance, transferable agents under various domains.

Thank you!

BEC

All code, prompt, generated agents are available.

