Effective post-training embedding compression via temperature control in contrastive training

Georgiana Dinu¹ Corey Barrett² Yi Xiang¹ Miguel Romero Calvo¹ Anna Currey¹ Xing Niu¹

¹Amazon ²Oracle

amazon science

Motivation

- Embeddings power many applications, particularly retrieval and retrievalaugmented generation; storing and searching large embedding collections is computationally costly.
- As downstream requirements are often unknown during training, fixed-size embeddings may be suboptimal. Post-training compression enables embeddings to flexibly adapt to variable system constraints at inference time.

This paper

- Role of temperature in contrastive training for text embeddings
- Impact on post-training compression

Temperature in contrastive learning

- Temperature parameter (tau) modulates impact of difficult negative examples
- Low temperature: Enhances the influence of most difficult negatives

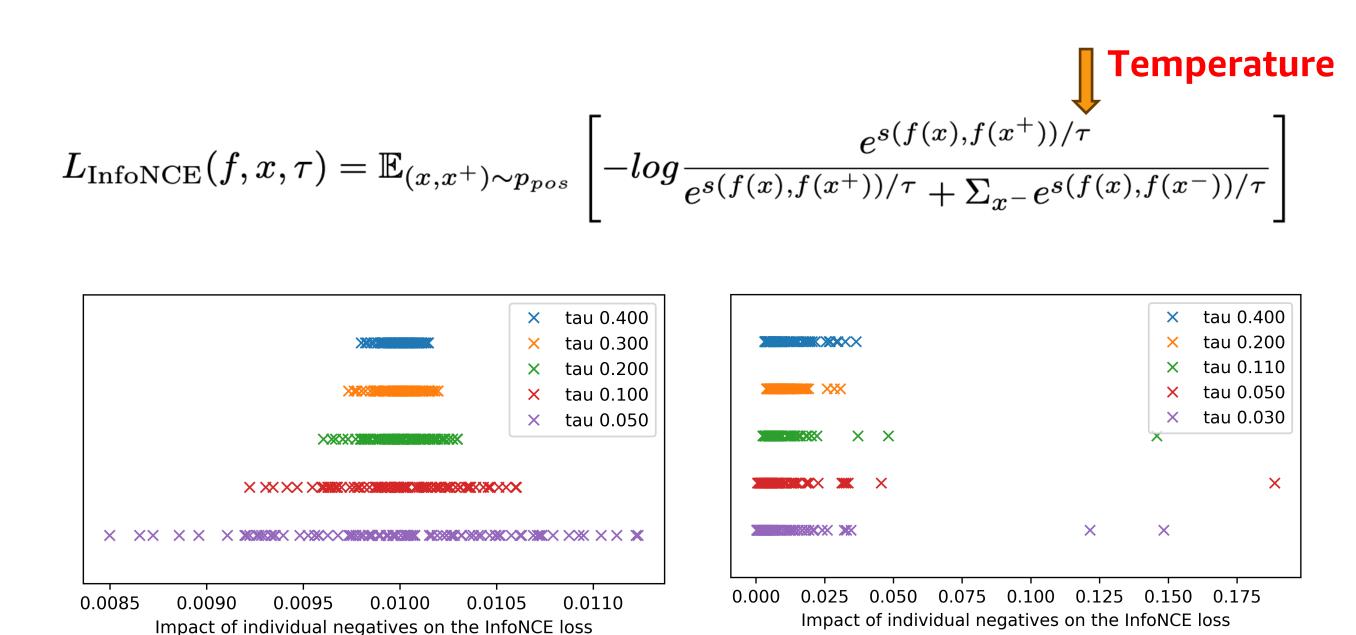


Figure 1: Each negative's contribution to InfoNCE normalization factor. Left: Random vectors (early training) and Right: mid-training vectors

Impact of temperature on tasks

Text embedding tasks:

- Retrieval: Measures relevance matching via ranking
- Clustering: Measures semantic similarity

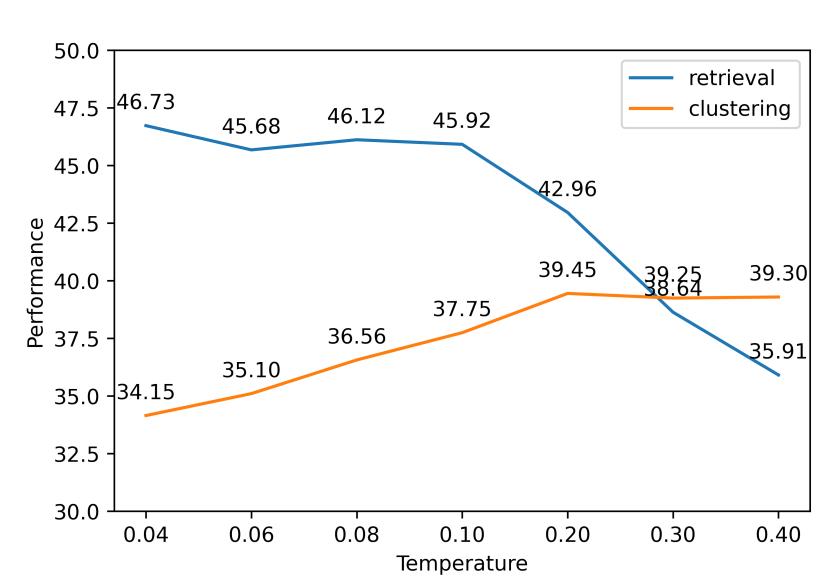


Figure 2: Performance trade-off across tasks: Retrieval performance decreases while clustering increases with larger temperatures.

- Hypothesis: high temperature produces a "more clustered" space, aiding clustering tasks
- Suggests interplay between capturing local and global structure under different temperature conditions

Intrinsic Dimensionality Analysis

Intrinsic dimensionality: The actual number of dimensions needed to represent the underlying structure of data. Calculated as the number of principal components needed to explain 95% of the variance (using PCA).

Key finding: Higher temperature \rightarrow Lower intrinsic dimensionality (temp=0.04 requires 654 dimensions for 95% variance, 0.4 only needs 393)

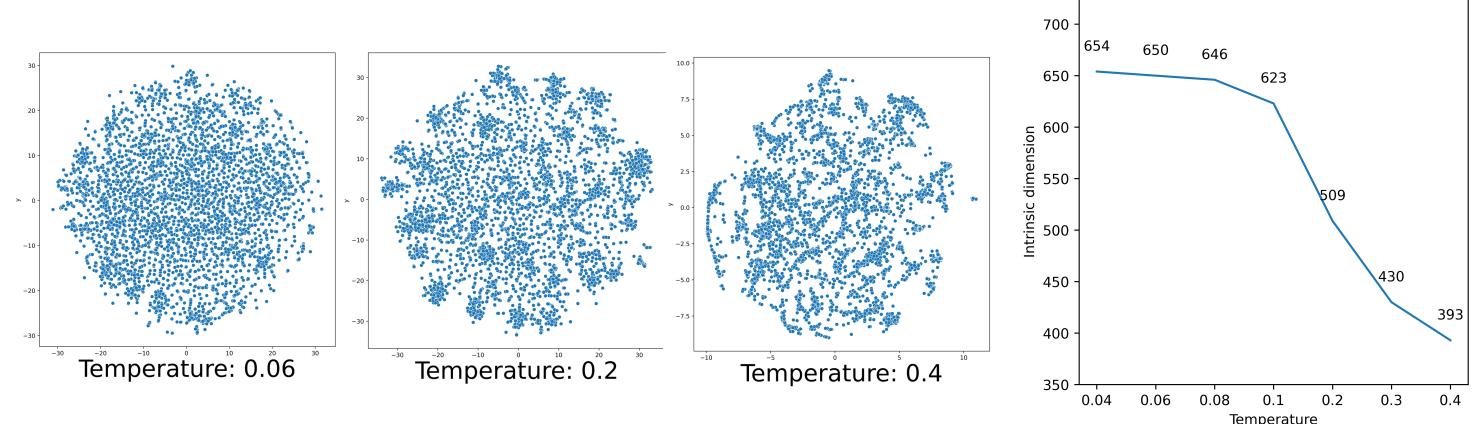


Figure 3: t-SNE projections of embeddings / temperature

 Spaces with lower intrinsic dimensionality exhibit more correlation and redundancy between features.

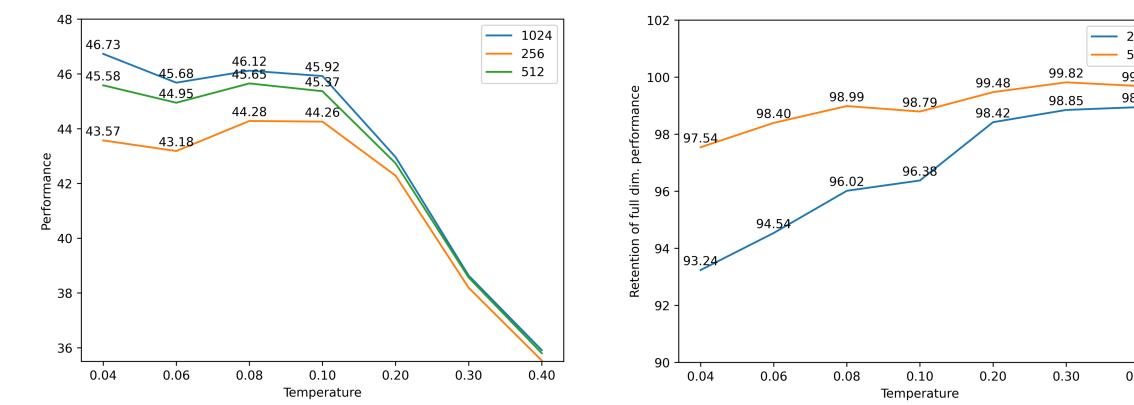
More compact representations possible with lower intrinsic dimensionality, suggesting natural pathway for compression.

Post-training compression

Metrics:

- Absolute retrieval quality
- Quality retention: ratio of retrieval performance before and after compression

Method 1: Random Feature Selection (via vector truncation). Reduce dimensions from $1024 \rightarrow 256/512$. Up to 4x reduction in storage.



Method 2: Binarization (32-bit values quantized to 1-bit using sign function. Hamming distance instead of cosine similarity for faster and better retrieval. 32x reduction in storage.

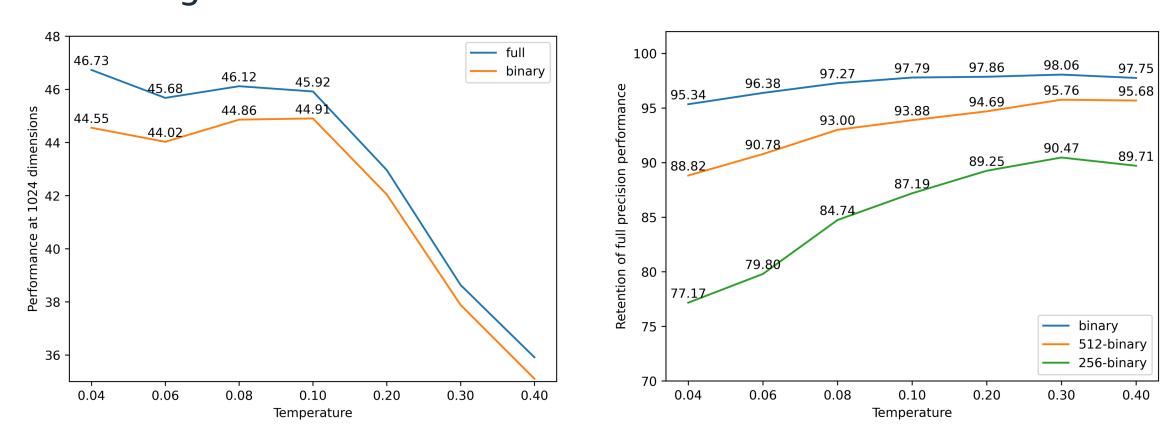


Figure 4. Vector truncation and binarization: Absolute quality drops / quality retention increases with larger temperatures

Temperature aggregation solutions

Goal: balance performance and compression objectives

Method 1: Plain Temperature Aggregation

- Sum of losses using different temperatures
- Use T=3 temperature values: [0.03, 0.06, 0.1] with uniform weights
- Covers best temperature range observed in experiments

$$L_{\text{TempAgg}}(f, x, \tau) = \sum_{t=1}^{T} w_t L_{\text{InfoNCE}}(f, x, \tau_t)$$

Method 2: Aggregation + MRL (Matryoshka Representation Learning)

MRL Promotes embeddings that retain quality when truncated to smaller dimensions

$$L_{\mathrm{MRL}}(f, x, \tau) = \sum_{i=1}^{k} \lambda_i L_{\mathrm{InfoNCE}}(f_{[1:d_i]}, x, \tau)$$

Apply temperature aggregation at each truncated dimensionality

$$L_{\text{TempAggMRL}}(f, x, \tau) = \sum_{i=1}^{k} \lambda_i L_{\text{TempAgg}}(f_{[1:d_i]}, x, \tau)$$

Method 3: Temperature Specialization + MRL

- Uses observation that lower temperatures are better for retrieval, especially for reduced dimensions
- Employs MRL loss with temperatures: {256:0.03, 512:0.06, 1024:0.1}
- Low temperature at 256 dimensions optimizes for retrieval. High temperature at 1024 provides aggregation effect and benefits clustering

	$\tau = 0.04$	$\tau = 0.1$	TempAgg	TempAggMRL	TempSpecMRL
Ret. (full)	46.7	45.9	46.4	46.6	46.0
Clust. (full)	34.1	37.7	36.4	36.9	37.4
Ret. 256	43.6	44.2	44.6	45.1	44.6
Ret. bin	44.6	44.9	45.2	45.2	44.8
Ret. bin re-rnk	45.6	45.6	45.9	46.1	45.5
Ret. 256/1024	93.2	96.4	96.2	96.9	97.1
Ret. bin/full prec	95.3	97.8	97.4	97.1	97.4
Ret. bin re-rnk /full prec	97.6	99.0	98.9	98.9	99.0
Intrinsic dim.	654	623	629	623	617

Table 1: Temperature aggregation matches performance of best single-temperature models while achieving compression quality retention of 97-99%

Intrinsic dimensionality reduction correlates with compressibility

Key takeaways

- The temperature parameter in contrastive learning impacts the intrinsic dimensionality and the task-specific performance of resulting text embedding spaces
- Embedding spaces with lower intrinsic dimensionality enable more efficient post-training compression via truncation and binarization, but show lower absolute performance on retrieval tasks
- Temperature aggregation methods effectively balance retrieval performance and compressibility, achieving 99% retention with 32x compression

References

- Khosla et al. Supervised contrastive learning. NeurIPS 2020.
- Wang & Liu. Understanding the behaviour of contrastive loss. CVPR 2020. Kukleva et al. Temperature schedules for self-supervised contrastive methods on long-tail data. ICLR 2023.
- Kusupati et al. Matryoshka representation learning. NeurIPS 2022.