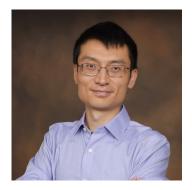


How Efficient is LLM Generated Code? A Rigorous & High-Standard Benchmark

Ruizhong Qiu UIUC (Presenter)



Weiliang Will Zeng Qualcomm

James Ezick Qualcomm

Christopher Lott
Qualcomm

Hanghang Tong UIUC

https://github.com/q-rz/enamel

ACKNOWLEDGEMENTS

How Efficient is LLM-Generated Code?

HumanEval: 2^{o(n)} recursions def fib(n): if n == 0: return 0 if n == 1: return 1 return fib(n - 1) + fib(n - 2)

```
GPT-4 Turbo: Θ(n) iterations

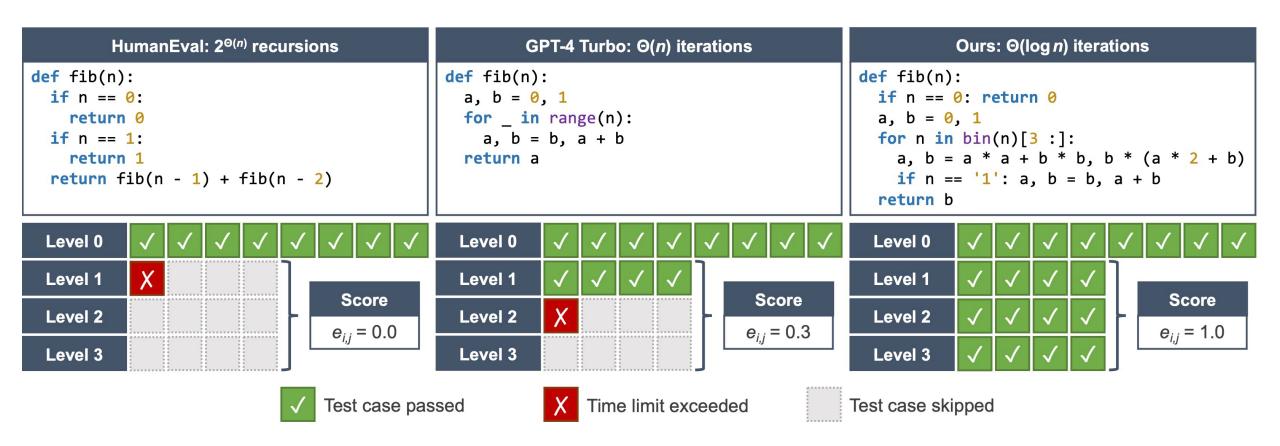
def fib(n):
    a, b = 0, 1
    for _ in range(n):
        a, b = b, a + b
    return a
```

```
Ours: \Theta(\log n) iterations

def fib(n):
    if n == 0: return 0
    a, b = 0, 1
    for n in bin(n)[3 :]:
        a, b = a * a + b * b, b * (a * 2 + b)
        if n == '1': a, b = b, a + b
    return b
```

- Example problem (from [1]): computing the n-th Fibonacci number.
 - While all correct, the three implementations above have different efficiencies.
 - Efficiency is crucial in real-world applications but is largely overlooked in existing benchmarks.
 - How does LLM-generated code compare with expert-written code in terms of efficiency?

Proposed Level-Based Evaluation



Efficiency Score of a Code Sample

- Notations:
 - T_i : time limit of problem i. $c_{i,j}$: the j-th LLM-generated code sample of problem i.
 - $t_{i,j,l,m}$: the execution time of code $c_{i,j}$ for the m-th test case in level l.
 - $t_{i.l.m}^*$: the execution time of our reference solution of problem i for the m-th test case in level l.
 - L: number of levels. M_l : number of test cases of level l. h_l : hardness of level l.
- Efficiency score of code $c_{i,j}$ in level l:

• Efficiency score of code
$$c_{i,j}$$
 in level l :
$$f_{i,j,l} := \frac{(T_i - \max\{t_{i,j,l,m}\}_{m=1}^{M_l})^+}{T_i - \max\{t_{i,l,m}^*\}_{m=1}^{M_l}}$$
• Efficiency score of code $c_{i,j}$:
$$\left\{\frac{\sum_{l=1}^L h_l \cdot f_{i,j,l}}{\sum_{l=1}^L h_l \cdot f_{i,j,l}}, \quad \text{if code } c_{i,j} \text{ is correct}\right\}$$

$$e_{i,j} := egin{cases} rac{\sum_{l=1}^L h_l \cdot f_{i,j,l}}{\sum_{l=1}^L h_l}, & ext{if code } c_{i,j} ext{ is correct;} \ 0, & ext{otherwise.} \end{cases}$$

Efficiency Metric for an LLM

• Proposed efficiency metric: a **generalization** of the widely used pass@k metric [1].

$$\operatorname{eff}_i @k := \underset{c_{i,1}, \dots, c_{i,k} \sim \operatorname{LLM}(z_i)}{\mathbb{E}} \left[\max_{j=1}^k e_{i,j} \right]$$

• Unbiased & variance-reduced estimator (Theorem 1):
$$\widehat{\operatorname{eff}}_i@k := \underset{\substack{J \subseteq \{1,\ldots,n\}\\|J|=k}}{\mathbb{E}} \left[\max_{j \in J} e_{i,j} \right] = \sum_{r=k}^n \frac{\binom{r-1}{k-1}}{\binom{n}{k}} e_{i,(r)}$$

Algorithm 1 Numerically stable eff_i@k

Input: score list $[e_{i,1}, \ldots, e_{i,n}]$; the target k

Output: the estimated $\widehat{\text{eff}}_i@k$

Numerically stable implementation:

```
1: \bar{\lambda}_n \leftarrow \frac{k}{n}
2: for r \leftarrow n-1, n-2, \dots, k do 3: \lambda_r \leftarrow \lambda_{r+1} \cdot \left(1 - \frac{k-1}{r}\right)
 4: end for
```

5:
$$[e_{i,(1)}, \dots, e_{i,(n)}] \leftarrow \text{sort}([e_{i,1}, \dots, e_{i,n}])$$

6: **return** $\sum_{r=k}^{n} \lambda_r e_{i,(r)}$

Benchmark Development

ID	Problem Description	HumanEval+ Solution	Our Expert Solution		
#10	Find the shortest palindrome that begins with a given string S	$O(S ^2)$: Enumerate suffixes and check palindromicity	$\Theta(S)$: Use Knuth–Morris–Pratt w.r.t. reversed S plus S		
#36	Count digit 7's in positive integers $< n$ that are divisible by 11 or 13	$\Theta(n \log n)$: Enumerate integers $< n$ and count the digits	$\Theta(\log n)$: Design a dynamic programming over digits		
#40	Check if a list l has three distinct elements that sum to 0	$O(l ^3)$: Enumerate triples in l and check their sums	$O(l ^2)$: Use a hash set and enumerate pairs in l		
#109	Check if a list a can be made non-decreasing using only rotations	$O(a ^2)$: Enumerate the rotations of a and check	O(a): Check if the list a has at most one inversion		
#154	Check if any rotation of a string b is a substring of a string a	$O(b ^2 a)$: Enumerate rotations and run string matching	O(a + b): Run the suffix automaton of a w.r.t. $b + b$		

- Problemset: 142 selected problems from HumanEval [1].
 - Including two subsets: (i) Algorithm Design; (ii) Implementation Optimization.
- Efficient reference solutions & strong test case generators:
 - We employ a human expert to curate them.
 - Significantly outperformed the canonical solutions in HumanEval [1] / HumanEval+ [2].

eff@1

0.455

0.513

1.000

Name

HumanEval

HumanEval+

ENAMEL (ours)

pass@1

0.908

0.972

1.000

Main Results (Truncated)

• Even strong LLMs still **fall short** of generating **expert-level** efficient code.

Model	Greedy		Sampling							
Model	eff@1	pass@1	eff@1	pass@1	eff@10	pass@10	eff@100	pass@100		
GPT-4 Turbo	0.470	0.796	_	_	_	_	_	_		
GPT-4	0.454	0.831	_	_	_			·		
Llama 3 70B Instruct	0.421	0.746	0.438	0.747	0.526	0.836	0.575	0.880		
Llama 3 8B Instruct	0.344	0.592	0.345	0.564	0.500	0.770	0.595	0.874		
Mixtral 8x22B Instruct	0.408	0.746	0.407	0.721	0.575	0.870	0.704	0.923		
Mixtral 8x7B Instruct	0.266	0.444	0.279	0.456	0.436	0.689	0.542	0.810		
Claude 3 Opus	0.401	0.789	_	_	_					
Claude 3 Sonnet	0.345	0.662	0.365	0.677	0.498	0.814	0.594	0.887		
Claude 3 Haiku	0.386	0.739	0.382	0.730	0.478	0.831	0.529	0.861		
Phind Code Llama V2	0.394	0.683	0.372	0.638	0.584	0.862	0.723	0.935		
ChatGPT	0.364	0.683	0.374	0.673	0.557	0.847	0.690	0.937		
Code Llama 70B Python	0.264	0.500	0.082	0.177	0.326	0.610	0.614	0.908		
Code Llama 34B Python	0.268	0.458	0.226	0.405	0.511	0.786	0.711	0.934		
Code Llama 13B Python	0.216	0.408	0.204	0.372	0.487	0.732	0.714	0.899		
Code Llama 7B Python	0.247	0.373	0.180	0.320	0.432	0.663	0.643	0.837		
StarCoder	0.195	0.352	0.134	0.236	0.355	0.557	0.542	0.787		
CodeGen 16B	0.169	0.310	0.122	0.219	0.326	0.512	0.536	0.761		
CodeGen 6B	0.193	0.296	0.111	0.188	0.298	0.455	0.491	0.694		
CodeGen 2B	0.153	0.254	0.098	0.168	0.264	0.389	0.421	0.602		
CodeT5+ 16B	0.160	0.317	0.130	0.250	0.343	0.551	0.551	0.785		
Mistral 7B	0.152	0.275	0.116	0.222	0.335	0.541	0.557	0.791		

Evaluation on Two Subsets (Truncated)

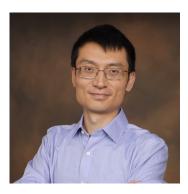
- LLMs struggle in designing advanced algorithms.
- LLMs are largely unaware of implementation optimization.

Model	Algorithm Design Subset					Implementation Optimization Subset						
Model	eff@1	pass@1	eff@10	pass@10	eff@100	pass@100	eff@1	pass@1	eff@10	pass@10	eff@100	pass@100
Llama 3 70B Instruct	0.246	0.660	0.306	0.749	0.359	0.750	0.404	0.791	0.497	0.869	0.551	0.920
Llama 3 8B Instruct	0.201	0.518	0.303	0.724	0.367	0.849	0.313	0.582	0.468	0.806	0.571	0.906
Mixtral 8x22B Instruct	0.225	0.635	0.363	0.837	0.470	0.900	0.376	0.783	0.556	0.914	0.686	0.947
Mixtral 8x7B Instruct	0.124	0.391	0.244	0.681	0.344	0.850	0.248	0.473	0.411	0.699	0.515	0.827
Claude 3 Sonnet	0.184	0.577	0.328	0.804	0.450	0.950	0.358	0.723	0.475	0.846	0.548	0.893
Claude 3 Haiku	0.149	0.692	0.208	0.752	0.266	0.775	0.360	0.772	0.465	0.889	0.513	0.923
Phind Code Llama V2	0.185	0.554	0.353	0.789	0.401	0.849	0.351	0.712	0.567	0.901	0.732	0.968
ChatGPT	0.120	0.488	0.304	0.799	0.483	0.950	0.337	0.715	0.508	0.864	0.633	0.949
Code Llama 70B Python	0.018	0.100	0.129	0.519	0.402	0.950	0.076	0.181	0.294	0.627	0.589	0.920
Code Llama 34B Python	0.071	0.293	0.271	0.713	0.425	0.881	0.197	0.415	0.473	0.804	0.687	0.949
Code Llama 13B Python	0.058	0.212	0.276	0.665	0.478	0.844	0.176	0.405	0.476	0.784	0.715	0.928
Code Llama 7B Python	0.068	0.202	0.231	0.589	0.393	0.761	0.165	0.349	0.417	0.703	0.620	0.863

Thanks for watching

How Efficient is LLM Generated Code? A Rigorous & High-Standard Benchmark

Ruizhong Qiu UIUC (Presenter)



Weiliang Will Zeng
Qualcomm

James Ezick Qualcomm

Christopher Lott
Qualcomm

Hanghang Tong UIUC

https://github.com/q-rz/enamel

ACKNOWLEDGEMENTS

