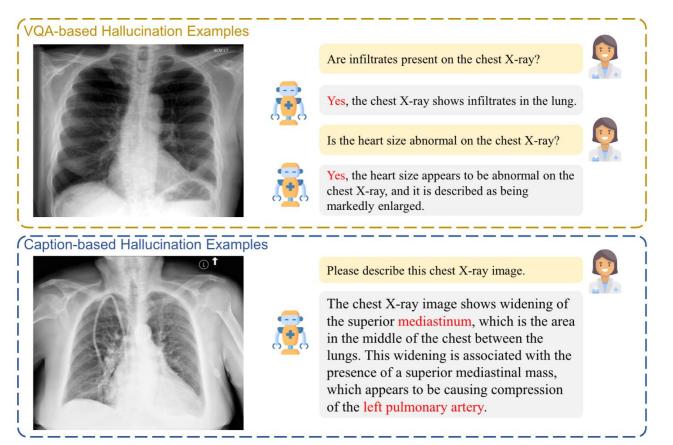
MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models

Peng Xia¹, Kangyu Zhu², Haoran Li³, Tianze Wang⁴, Weijia Shi⁵, Sheng Wang⁵, Linjun Zhang⁴, James Zou⁶, Huaxiu Yao¹

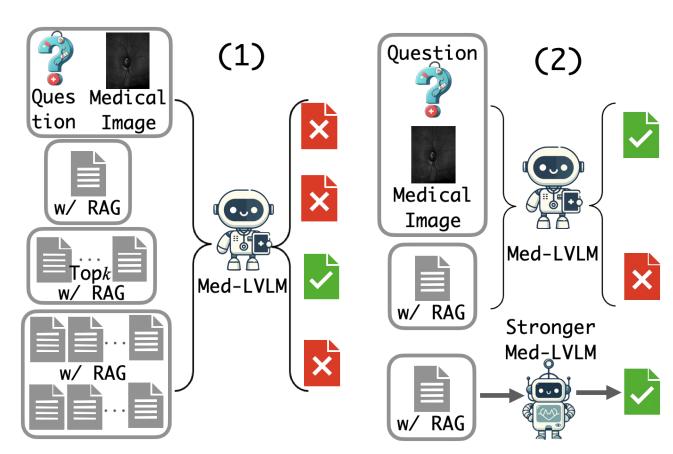
¹UNC-Chapel Hill, ²Brown University, ³Carnegie Mellon University, ⁴Rutgers University, ⁵University of Washington, ⁶Stanford University



tl;dr: a multimodal RAG system to improve the factuality for medical large vision language models (Med-LVLMs)

[[pxia, huaxiu]@cs.unc.edu

Background


Hallucination in Med-LVLMs

Goal: Build a Reliable Med-LVLM to Generate Factual Responses

Motivation

Recent RAG-based Method

Challenges 🤷

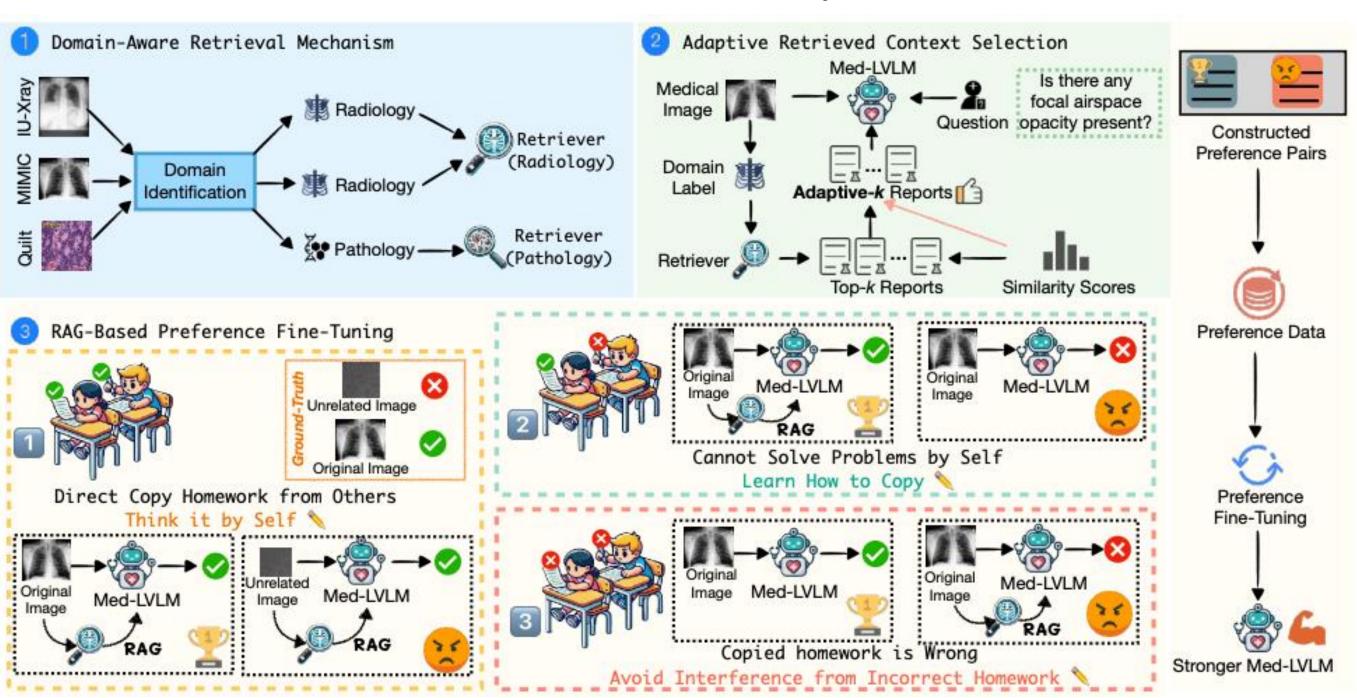
1 lack of sufficient high-quality

labeled data for fine-tuning ⇒ RAG Q

2 distribution gap exists between the training data and the real-world data

3 dataset-specific: reducing the generalizability ⇒ MMed-RAG

4 misalignment issues: cross-modality and overall alignment


Methodology

(1) Domain Identification 🔍

Domain-aware retrieval mechanism: select the best retriever

(2) Adapted Retrieved Context Selection **►**

Dynamically adjusts retrieved info based on similarity scores

(3) RAG-Based Preference Fine-Tuning 2

□ Direct Copy Homework from Others X Think it by Self ☑
Avoid blindly copying external information by encouraging the model to rely on its own visual reasoning when solving complex problems

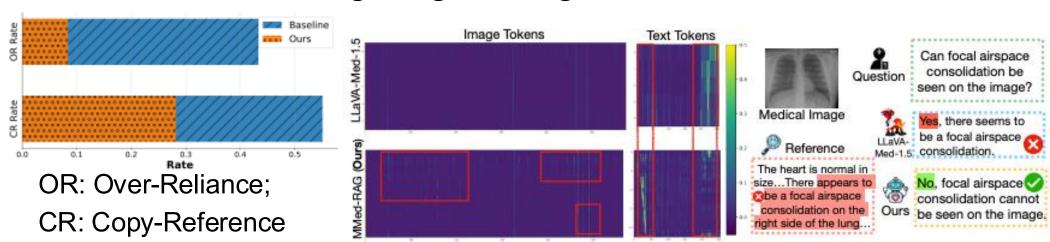
2 Cannot Solve Problems by Self X Learn How to Copy 2 When Med-LVLMs are unsure, MMed-RAG teaches the model to intelligently use retrieved knowledge, pulling in the right information at the right time

Copied Homework is Wrong X Avoid Interference from Incorrect Homework

Prevent models from being misled by incorrect retrievals, reducing the risk of generating inaccurate medical diagnoses

Experiments

Medical Visual Question-Answering (VQA)


Models	Radiology					Ophthalmology		Pathology							
1,10,0018	IU-Xray			MIMIC-CXR		Harvard-FairVLMed		Quilt-1M			PMC-OA (Pathology)				
	Acc	F1	AUC	Acc	F1	AUC	Acc	F1	AUC	Acc	F1	AUC	Acc	F1	AUC
LLaVA-Med-1.5	75.47	64.04	67.46	75.79	80.49	68.84	63.03	74.11	63.05	62.80	72.90	60.03	59.28	71.98	54.19
+ Greedy	76.88	65.59	68.74	78.32	86.75	71.13	82.54	85.98	70.09	64.72	70.12	58.75	58.61	70.42	53.10
+ Beam Search	76.91	66.06	68.77	81.56	86.36	73.79	80.93	88.08	68.94	63.52	69.33	57.65	56.29	69.84	52.89
+ DoLa	78.00	66.75	72.19	81.35	85.73	72.73	76.87	85.53	67.10	63.47	69.10	57.58	57.71	70.27	52.95
+ OPERA	70.59	61.54	63.22	69.34	76.66	62.46	71.41	81.37	65.59	60.51	66.32	54.79	55.32	68.30	51.86
+ VCD	68.99	54.35	61.08	70.89	75.57	64.61	65.88	77.20	64.16	61.43	67.39	55.72	55.10	67.94	51.62
+ MedDr	83.33	67.80	77.15	55.16	56.18	58.47	70.17	80.72	64.15	68.15	73.23	67.01	59.97	69.19	57.01
+ FactMM-RAG	84.51	68.51	77.07	77.58	81.86	70.09	83.67	87.21	72.20	69.25	73.62	68.15	60.49	69.38	57.31
+ RULE	87.84	78.00	85.78	83.92	87.49	83.44	87.12	92.89	77.08	68.97	73.80	68.13	61.41	70.36	58.91
MMed-RAG	89.54	80.72	87.13	83.57	88.49	85.08	87.94	92.78	80.81	72.95	76.35	72.25	64.54	73.09	61.42

Report Generation

Models			Ophthalmology						
1,100013		IU-Xray			MIMIC-CX	R	Harvard-FairVLMed		
	BLEU	ROUGE-L	METEOR	BLEU	ROUGE-L	METEOR	BLEU	ROUGE-L	METEOR
LLaVA-Med-1.5	9.64	12.26	8.21	12.11	13.05	11.16	18.11	11.36	10.75
+ Greedy	11.47	15.38	12.69	16.63	14.26	14.19	17.98	11.49	13.77
+ Beam Search	12.10	16.21	13.17	16.97	14.74	14.43	18.37	12.62	14.50
+ DoLa	11.79	15.82	12.72	17.11	14.89	14.81	18.26	12.51	14.51
+ OPERA	10.66	14.70	12.01	15.40	12.52	13.72	16.59	11.47	13.63
+ VCD	10.42	14.14	11.59	15.18	12.30	13.38	16.73	11.38	13.89
+ MedDr	12.37	16.45	13.50	18.59	15.72	16.77	19.82	13.72	15.40
+ FactMM-RAG	14.70	18.05	15.92	18.71	15.84	16.82	20.82	14.17	15.31
+ RULE	27.53	23.16	27.99	18.61	15.96	17.42	22.35	14.93	17.74
MMed-RAG	31.38	25.59	32.43	23.25	12.34	20.47	24.82	16.59	19.85

Analysis

Effectiveness in Mitigating Misalignment Issues

Ablation Study

Model	IU-2	Xray	FairVLMed		
	VQA	RG	VQA	RG	
LLaVA-Med-1.5	68.99	10.04	66.63	13.41	
+DR	77.12	13.23	72.69	15.89	
+RCS	79.56	17.92	75.74	17.22	
+RAG-PT (Ours)	85.80	29.80	87.18	20.42	

DR: domain-aware retrieval mechanism; RCS: adaptive retrieval context selection; RAG-PT: RAG-based preference fine-tuning

Impact of Preference Data

- 1: Direct Copy Homework from Others;
- 2: Cannot Solve Problems by Self;
- 3: Copied Homework is Wrong

IU-2	xray	Fair v Livied			
VQA	RG	VQA	RG		
68.99	10.04	66.63	13.41		
80.19	19.38	79.42	18.37		
80.27	20.16	79.35	18.66		
81.30	19.43	80.07	18.92		
	VQA 68.99 80.19 80.27	68.99 10.04 80.19 19.38 80.27 20.16	VQA RG VQA 68.99 10.04 66.63 80.19 19.38 79.42 80.27 20.16 79.35		

References

Li C, Wong C, Zhang S, et al. Llava-med: Training a large language-and-vision assistant for biomedicine in one day. NeurIPS 2023.

Xia P, Chen Z, Tian J, et al. Cares: A comprehensive benchmark of trustworthiness in medical vision language models.. NeurIPS 2024.

Xia P, Zhu K, Li H, et al. Rule: Reliable multimodal rag for factuality in medical vision language models. EMNLP 2024.

Hu Y, Li T, Lu Q, et al. Omnimedvqa: A new large-scale comprehensive evaluation benchmark for medical lvlm. CVPR 2024.