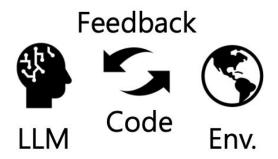
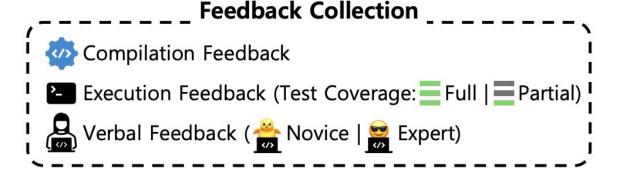
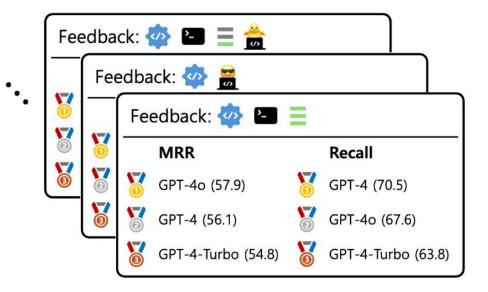


ConvCodeWorld: Benchmarking Conversational Code Generation in Reproducible Feedback Environments


Hojae Han¹, Seung-won Hwang^{1†}, Rajhans Samdani², Yuxiong He²
¹Seoul National University, ²Snowflake Al Research
[†]Corresponding Author

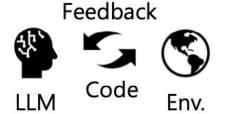
Motivation: Evaluate Code LLMs on Interactable Environments

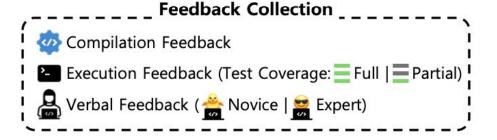


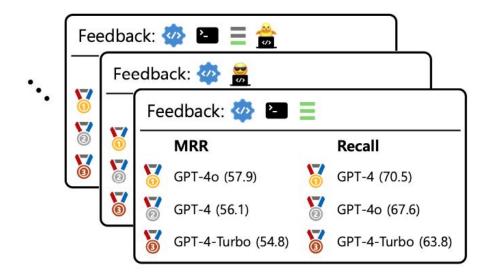

Most code generation benchmarks do not support interactable environments.

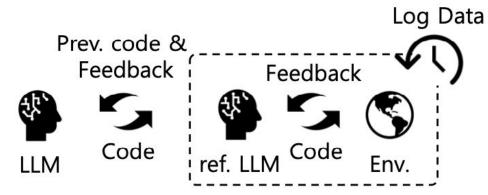
Motivation: Evaluate Code LLMs on Interactable Environments

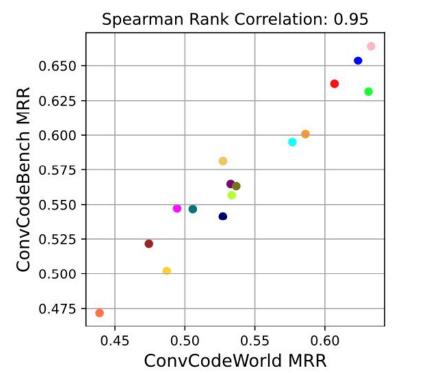
Our goal is to build a benchmark that can evaluate LLMs' code generation capabilities while interacting with various feedback combination.





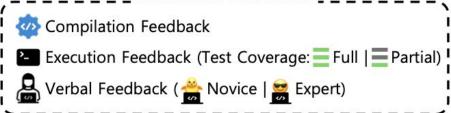


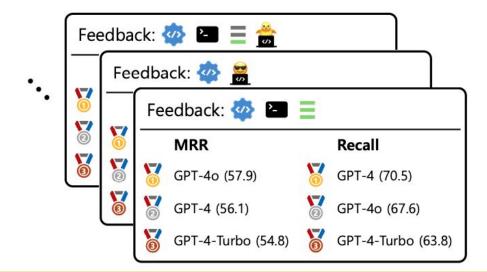

A Reproducible Environment with Diverse Feedback Combinations


A Cost-Effective Benchmark Strongly Correlates to CONVCODEWORLD

A Reproducible Environment with Diverse Feedback Combinations

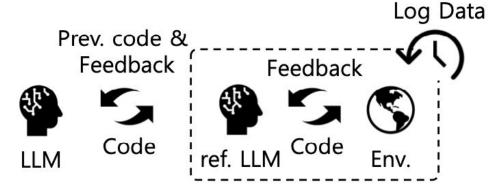
Feedback

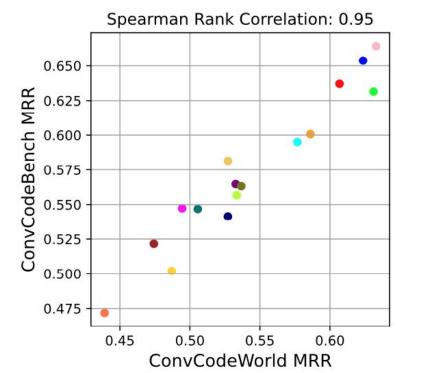




LLM

Code Env.


Feedback Collection _



A Cost-Effective Benchmark Strongly Correlates to CONVCODEWORLD

- $igcolon {igcolon} {f C}$ Compilation Feedback (f_c)

32

- $igoplus_c$ Compilation Feedback (f_c)

Compilation Feedback:

```
Traceback (most recent call last):
File "tmp.py", line 6
return int_list

IndentationError: unindent does not match any outer indentation level
```

- $igcolon {igcolon} {f C}$ Compilation Feedback (f_c)
- Execution Feedback (Test Coverage: Full | Partial) ($f_e | f_e^*$)

- $igoplus Compilation Feedback (<math>f_c$)
- Execution Feedback (Test Coverage: Full | Partial) ($f_e | f_e^*$)

Execution Feedback with Partial Test Coverage (f_e)

```
TEST_SMTP_SERVER_CONNECTION_ERROR
     Traceback (most recent call last):
       File "/notebooks/miniconda/envs/bigcodebench/lib/python3.9/unittest/mock.py", line 1336, in patched
         return func(*newargs, **newkeywargs)
      File "__test__.py", line 125, in test_smtp_server_connection_error
      File "__test__.py", line 39, in task_func
      File "/tmp/utils.py", line 251, in readline
        raise IOError
     OSError
10
11
12
     TEST SUCCESSFUL EMAIL SEND
13
     Traceback (most recent call last):
       File "/notebooks/miniconda/envs/bigcodebench/lib/python3.9/unittest/mock.py", line 1336, in patched
14
         return func(*newargs, **newkeywargs)
15
       File "__test__.py", line 81, in test_successful_email_send
       File "__test__.py", line 39, in task_func
17
       File "/tmp/utils.py", line 251, in readline
18
19
         raise IOError
20
     OSError
```

- $igoplus_c$ Compilation Feedback (f_c)
- Execution Feedback (Test Coverage: Full | Partial) ($f_e \mid f_e^*$)
- Verbal Feedback (Novice | Expert) ($f_v | f_v^*$)

- $igoplus_c$ Compilation Feedback (f_c)
- Execution Feedback (Test Coverage: Full | Partial) ($f_e | f_e^*$)
- Verbal Feedback (Novice | Expert) ($f_v | f_v^*$)

For reproducibility and consistency, we used an LLM (GPT-40) to generate Verbal Feedback

Novice-Level Verbal Feedback

Novice-Level Verbal Feedback (f_v)

```
I got this error:
     Traceback (most recent call last):
       File "/notebooks/miniconda/envs/bigcodebench/lib/python3.9/unittest/mock.py", line 1336, in patched
         return func(*newargs, **newkeywargs)
       File "__test__.py", line 125, in test_smtp_server_connection_error
       File "__test__.py", line 39, in task_func
       File "/tmp/utils.py", line 251, in readline
         raise TOError
10
     OSError
11
12
     Traceback (most recent call last):
13
       File "/notebooks/miniconda/envs/bigcodebench/lib/python3.9/unittest/mock.py", line 1336, in patched
         return func(*newargs, **newkeywargs)
       File "__test__.py", line 81, in test_successful_email_send
15
16
       File "__test__.py", line 39, in task_func
       File "/tmp/utils.py", line 251, in readline
18
         raise IOError
19
     OSError
20
     It seems like there is an issue with the socket connection or the way the code is handling the socket. The
    → `OSError` exceptions are being raised during the execution of the `task_func` function.
```

Use GPT-40 to verbalize Compilation and/or Execution Feedback (+ suggestions which might be unreliable)

Expert-Level Verbal Feedback

```
Example Input:
    Sort a list of integers in ascending order. The function should take a list of integers and
    → return a sorted list. Ensure that the function handles negative numbers and zeros
    → correctly. Check if the function's output is a sorted list.
    ```python
 >>> sorted_list = sort_func([3, -1, 0, 5, -10, 2])
 >>> sorted list
 [-10, -1, 0, 2, 3, 5]
 You should write self-contained code starting with:
    ```python
    def sort_func(int_list):
11
12
    Ground Truth Code:
                                   Ground Truth Code provides the expert knowledge
    ```python
 def sort_func(int_list):
 return sorted(int_list)
16
17
18
 Previous Code:
    ```python
    def sort_func(int_list):
21
        for i in range(len(int list)):
            for j in range(len(int_list) - 1):
24
                if int_list[j] < int_list[j + 1]:</pre>
                    int_list[j], int_list[j + 1] = int_list[j + 1], int_list[j]
        return int_list
26
    test_list = [3, -1, 0, 5, -10, 2]
    print(sort_func(test_list))
30
31
```

Input: Problem Description (+ Compilation and/or Execution Feedback) + *Ground Truth Code* + Previous Code

Expert-Level Verbal Feedback

```
35
    User Feedback:
36
    1. **Sorting Algorithm**: The `previous code` implements a bubble sort algorithm, but it sorts

    the list in descending order due to the condition `if int_list[j] < int_list[j + 1]`. The
</p>
    37
38
    2. **Edge Case Handling**: While the 'previous code' attempts to handle all integers, it
    → incorrectly sorts the list in the reverse order. Ensure that the sorting condition
    → correctly compares elements to achieve ascending order.
39
    3. **Code Simplicity and Readability**: The bubble sort implementation in the `previous_code`
40
    → is more complex and less readable compared to using the built-in `sorted()` function.
    → Simplifying the code to use `sorted()` will enhance readability and maintainability.
41
42
    4. **Performance**: The bubble sort algorithm used in the `previous_code` has a time
    \hookrightarrow complexity of O(n^2), which can be inefficient for large lists. The `sorted()` function,
    → on the other hand, uses Timsort, which has a time complexity of O(n log n) and is more

→ suitable for sorting large datasets.

43
44
    5. **Test Case Verification**: The `previous code` includes a print statement to verify the
    → function's output. While this is useful for debugging, consider using assertions or test
    → functions to automate the verification process in a more scalable way.
45
46
    Overall, the 'previous_code' functions incorrectly by sorting the list in descending order.
```

→ Using the correct comparison in the bubble sort condition or utilizing Python's built-in

→ sorting capabilities would improve the function's correctness and performance.

47

- $igoplus_c$ Compilation Feedback (f_c)
- Execution Feedback (Test Coverage: Full | Partial) ($f_e \mid f_e^*$)
- Verbal Feedback (Novice | Expert) ($f_v | f_v^*$)

- $\langle m \rangle$ Compilation Feedback (f_c)
- Execution Feedback (Test Coverage: Full | Partial) ($f_e \mid f_e^*$)
- Verbal Feedback (Novice | Expert) ($f_v | f_v^*$)

Feedback	Fault Localization	Guidance for Refinement
f_c	35	rrors only 🗶
$f_{m{e}}$	$ extstyle extstyle \times ^2$ limited 1	·c 🗶
$f_e^{oldsymbol{st}}$	✓	X - notantial misquidance
$f_{m{v}}$	$ extstyle extstyle extstyle \times 2$ limited 1	Δ^3 potential misguidance due to limited expertise
$_$ $f_v^{oldsymbol{st}}$	✓	✓

- Compilation Feedback (f_c)
- Execution Feedback (Test Coverage: Full | Partial) ($f_e | f_e^*$)
- Reversal Feedback (Reverse Novice | Reverse Expert) $(f_v | f_v^*)$

$$\Omega = \langle f_c, [\phi|f_e|f_e^*], [\phi|f_v|f_v^*] \rangle$$

			Ω	InterCode	MINT	CONVCODEWORLD
	Fault Guidance f	or	$\langle f_c, \phi, \phi \rangle$	X	X	/
Feedback	Localization Refinement		$\langle f_c, f_e, \phi angle$	X	1	✓
	\wedge^1 syntax errors only χ	<u></u>	$\langle f_c, f_e^{oldsymbol{st}}, \phi angle$	1	X	✓
$\int_{\mathcal{C}} c$			$\langle f_c, \phi, f_v angle$	X	X	✓
f_e	$ riangle^2$ limited TC $ ilde{ imes}$		$\langle f_c, f_e, f_v angle$	X	1	✓
$f_e^{m{st}}$	× 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	tential misguidance	10 04 0	X	X	/
f_{v}	$ riangle^2$ limited TC $ riangle^3$ $ riangle^{00}$	to limited expertis	$\langle f_c, \phi, f_v^* \rangle$	X	X	/
$f_v^{m{st}}$	/	•	$\langle f_c, f_e, f_v^* angle$	X	1	1
		.	$\langle f_c, f_e^*, f_v^* angle $	Ç	v	
			$\langle J_c, J_e, J_v \rangle$	^		√

Setup

Base Benchmark: BigCodeBench-Full-Instruct

- highly challenging problem sets (Prev. SOTA: 51.1 of Pass@1)
- large scale (1,140 problems)

Maximum Number of Iterations: 10

Evaluation Metrics

- Mean Reciprocal Rank (MRR): 1/k where k is the turn at which the model produces correct code
 - → Measures how fast correct code is returned.
- **Recall**: 1 if the model produces correct code within n turns.
 - → Measures whether correct code is eventually returned.

Table 7: MRR results on CONVCODEWORLD. X indicates that no feedback of that type is provided Table 8: Recall results on CONVCODEWORLD. X indicates that no feedback of that type is provided experiments, except for the R1-Distill models, which are set to 16K.

X	+										
	f_c	f_c	f_c	${f}_c$	f_c	f_c	f_c	f_c	f_c		
X	X	f_{e}	f_e^*	X	$f_{m{e}}$	f_e^*	X	f_{e}	f_{e}^{*}		
X	X	X	X	f_v	${f}_v$	${f}_v$	$f_v^{m{st}}$	$f_v^{m{st}}$	$f_e^* \\ f_v^*$		
Closed-Source Models											
46.0	46.0	<u>52.1</u>	<u>56.1</u>	46.0	52.4	<u>56.4</u>	63.1	64.3	64.8		
<u>48.0</u>	48.0	51.8	54.8	<u>48.0</u>	<u>52.6</u>	56.4	62.4	64.3	64.5		
50.8	50.8	55.0	57.9	50.8	55.1	58.6	63.3	64.7	65.3		
<u>O</u> p	en-Source	e Mode	$ls (\geq 30)$	$\bar{\mathbf{B}}$) – –							
46.1	46.2	51.7	55.2	46.2	51.3	55.3	58.0	59.5	59.7		
47.6	47.7	52.6	56.0	47.7	53.3	57.0	61.6	63.9	64.1		
45.9	45.9	51.2	54.3	45.9	51.7	55.8	60.3	61.4	62.4		
45.8	45.8	47.9	49.5	45.8	49.8	53.4	61.6	62.7	63.8		
45.4	45.4	49.9	53.4	45.4	50.8	55.2	60.7	62.6	63.3		
41.6	41.6	43.4	43.6	41.6	45.5	48.0	58.6	58.5	58.8		
41.6	41.6	42.9	42.9	41.6	45.6	48.1	57.7	58.2	58.91		
32.9	33.0	35.8	38.3	33.0	38.6	41.4	50.6	52.0	52.7		
32.0	32.0	35.3	36.7	32.0	36.6	39.7	47.4	42.6	40.8		
28.8	28.8	31.0	31.9	28.8	32.5	35.1	48.7	49.2	49.8		
<u>O</u> p	en-Source	e Mode	ls (< 30)	<u>B</u>) – –							
31.4	31.5	34.0	34.6	31.5	36.1	39.1	49.4	49.8	51.3		
38.3	38.3	40.5	41.7	38.3	42.0	43.8	52.7	52.9	53.3		
35.2	35.2	36.2	36.1	35.2	38.8	40.5	53.3	53.2	53.9		
37.4	37.4	38.3	38.7	37.4	40.4	42.4	53.3	53.8	53.6		
39.3	39.4	39.7	40.1	39.3	42.0	43.7	53.7	53.5	54.8		
37.1	37.1	37.9	38.3	37.1	39.4	40.5	52.7	52.8	52.1		
28.4	28.4	29.0	29.0	28.4	31.2	33.0	43.9	44.3	44.8		
21.8	21.8	22.3	22.3	21.8	23.5	25.2	35.0	33.4	33.9		
	46.0 48.0 50.8 Op 46.1 47.6 45.9 45.8 45.4 41.6 41.6 32.9 32.0 28.8 Op 31.4 38.3 35.2 37.4 39.3 37.1 28.4	Closed- 46.0 46.0 48.0 48.0 50.8 50.8 Open-Sourd 46.1 46.2 47.6 47.7 45.9 45.9 45.8 45.8 45.4 45.4 41.6 41.6 32.9 33.0 32.0 32.0 28.8 28.8 Open-Sourd 31.4 31.5 38.3 38.3 35.2 35.2 37.4 37.4 39.3 39.4 37.1 37.1 28.4 28.4	Closed-Source 1 46.0 46.0 52.1 48.0 48.0 51.8 50.8 50.8 55.0 Open-Source Model 46.1 46.2 51.7 47.6 47.7 52.6 45.9 45.9 51.2 45.8 45.8 47.9 41.6 41.6 42.9 32.9 33.0 35.8 32.0 32.0 35.3 28.8 28.8 31.0 Open-Source Model 31.4 31.5 34.0 38.3 38.3 40.5 35.2 35.2 36.2 37.4 37.4 38.3 39.3 39.4 39.7 37.1 37.1 37.9 28.4 28.4 29.0	Closed-Source Models 46.0 46.0 52.1 56.1 48.0 48.0 51.8 54.8 50.8 50.8 55.0 57.9 Open-Source Models ($\geqslant 30$ 46.1 46.2 51.7 52.6 47.6 47.7 52.6 56.0 45.9 45.9 51.2 54.3 45.8 45.8 47.9 49.5 45.4 45.4 49.9 53.4 41.6 41.6 43.4 43.6 41.6 41.6 42.9 42.9 32.9 33.0 35.8 38.3 32.0 32.0 35.3 36.7 28.8 28.8 31.0 31.9 Open-Source Models (< 30 31.4 31.5 34.0 34.6 38.3 38.3 40.5 41.7 35.2 35.2 36.2 36.1 37.4 37.4 38.3 38.7 39.3 39.4 39.7 40.1 37.1 37.1 37.9 38.3 28.4 28.4 29.0 29.0	Closed-Source Models $46.0 46.0 52.1 56.1 46.0$ $48.0 50.8 55.0 57.9 50.8$ Open-Source Models ($\geqslant 30B$) $66.1 46.2 51.7 55.2 46.2$ $47.6 47.7 52.6 56.0 47.7$ $45.9 45.9 51.2 54.3 45.9$ $45.4 45.4 49.9 53.4 45.4$ $41.6 41.6 42.9 42.9 41.6$ $32.9 33.0 35.8 38.3 33.0$ $32.0 32.0 35.3 36.7 32.0$ $28.8 28.8 31.0 31.9 28.8$ Open-Source Models ($\leqslant 30B$) $31.4 31.5 34.0 34.6 31.5$ $38.3 38.3 340.5 41.7 38.3$ $35.2 35.2 36.2 36.1 35.2$ $37.4 37.4 38.3 38.7 37.4$ $39.3 39.4 39.7 40.1 39.3$ $37.1 37.1 37.9 38.3 37.1$ $28.4 28.4 29.0 29.0 28.4$	Closed-Source Models $46.0 46.0 52.1 56.1 46.0 52.4$ $48.0 48.0 51.8 54.8 48.0 52.6$ $50.8 50.8 55.0 57.9 50.8 55.1$ Open-Source Models ($\geqslant 300B$) $46.1 46.2 51.7 55.2 46.2 51.3$ $47.6 47.7 52.6 56.0 47.7 53.3$ $45.9 45.9 51.2 54.3 45.9 51.7$ $45.8 45.8 47.9 49.5 45.8 49.8$ $45.4 45.4 49.9 53.4 45.4 50.8$ $41.6 41.6 43.4 43.6 41.6 45.5$ $41.6 41.6 42.9 42.9 41.6 45.6$ $32.9 33.0 35.8 38.3 33.0 38.6$ $32.0 32.0 35.3 36.7 32.0 36.6$ $28.8 28.8 31.0 31.9 28.8 32.5$ Open-Source Models ($\leqslant 30B$) $31.4 31.5 34.0 34.6 31.5 36.1$ $38.3 38.3 40.5 41.7 38.3 32.5$ $000000000000000000000000000000000000$	X X X f_v f_v f_v Closed-Source Models 46.0 46.0 52.1 56.1 46.0 52.4 56.4 48.0 48.0 51.8 54.8 48.0 52.6 56.4 50.8 50.8 55.0 57.9 50.8 55.1 58.6 Open-Source Models (≥ 30B) 46.1 46.2 51.7 55.2 46.2 51.3 55.3 47.6 47.7 52.6 56.0 47.7 53.3 57.0 45.9 45.9 51.2 54.3 45.9 51.7 55.8 45.9 45.9 51.2 54.3 45.9 51.7 55.8 45.8 45.9 45.9 45.8 49.8 53.4 45.4 49.9 53.4 45.4 50.8 55.2 41.6 41.6 42.9 42.9 41.6 45.6 48.1 32.9 33.0 35	X X f_v	X X f_v f_v f_v f_v^*		

(ϕ). The leftmost results, with three X, represent $\Omega = \langle \phi, \phi, \phi \rangle$, corresponding to single-turn code (ϕ). The leftmost results, with three X, represent $\Omega = \langle \phi, \phi, \phi \rangle$, corresponding to single-turn code generation without any feedback. For each column, bold and underscore indicate 1st and 2nd place generation without any feedback. For each column, bold and underscore indicate 1st and 2nd place performance within the same model group. Maximum token length is set to 8K throughout the performance within the same model group. Maximum token length is set to 8K throughout the experiments, except for the R1-Distill models, which are set to 16K.

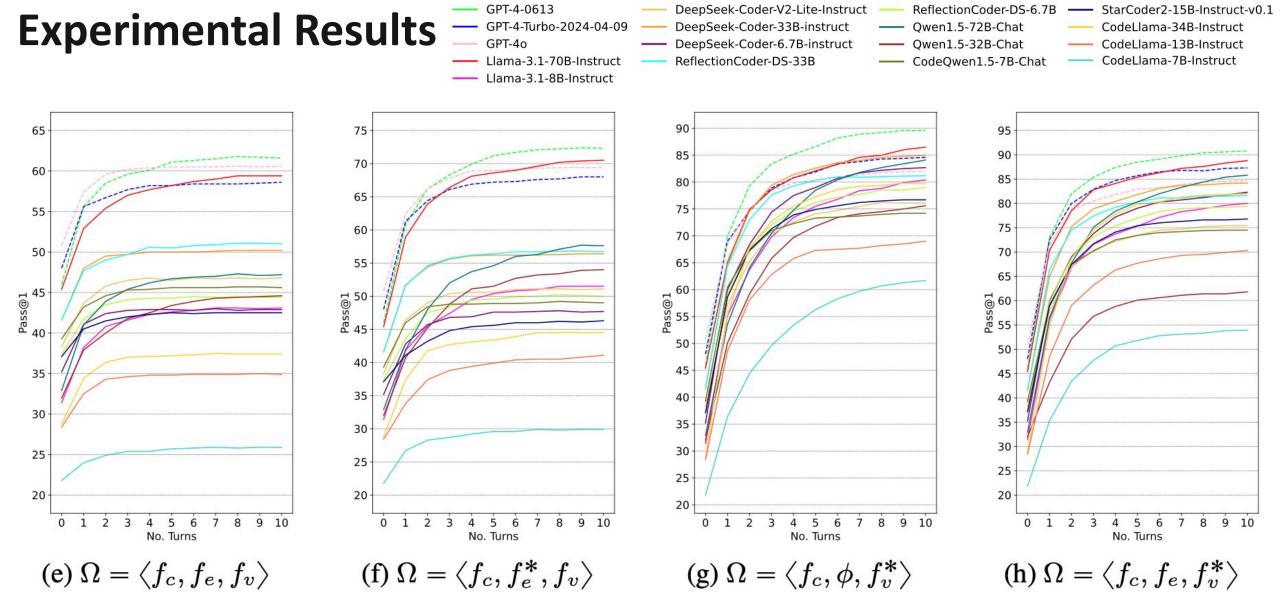
Compilation Feedback	X	f_c	f_c	f_c	f_c	f_c	f_c	f_c	f_c	f_c
Execution Feedback	X	X	$f_{m{e}}$	f_e^*	X	f_e	f_e^*	X	f_{e}	$f_e^{m{st}} \ f_v^{m{st}}$
Verbal Feedback	X	X	X	X	f_v	f_v	f_v	f_v^*	f_v^*	f_{v}^*
Closed-Source Models										
GPT-4-0613	46.0	46.0	60.3	70.5	46.0	61.9	72.5	89.7	91.1	92.5
GPT-4-Turbo-2024-04-09	48.0	48.0	56.7	63.8	48.0	58.6	68.1	84.7	87.5	88.5
GPT-4o-2024-05-13	50.8	50.8	60.5	<u>67.6</u>	50.8	60.8	69.6	82.3	84.9	86.2
	Op	en-Sour	ce Mode	Īs (≥ 30	B)					
DeepSeek-R1-Distill-Llama-70B (16K)	46.1	46.2	61.7	72.7	46.2	60.2	73.8	82.0	86.8	86.1
Llama-3.3-70B-Instruct	47.6	47.7	59.0	67.7	47.7	61.5	72.2	84.6	87.6	88.9
DeepSeek-R1-Distill-Qwen-32B (16K)	45.9	45.9	<u>59.5</u>	68.1	45.9	61.2	74.0	85.0	88.1	89.0
Qwen2.5-32B	45.8	45.9	50.4	53.9	46.0	54.8	62.6	84.7	85.5	87.5
Llama-3.1-70B-Instruct	45.4	45.4	56.2	64.8	45.4	59.5	70.8	86.7	88.9	91.8
DeepSeek-Coder-33B-Instruct	41.6	41.6	45.5	46.1	41.6	50.4	56.6	85.4	84.6	85.6
ReflectionCoder-DS-33B	41.6	41.6	45.3	44.9	41.6	51.4	57.2	81.4	81.8	84.2
Qwen1.5-72B-Chat	32.9	33.2	39.9	<u>47.5</u>	33.2	47.5	57.9	84.4	86.1	87.2
Qwen1.5-32B-Chat	32.0	32.0	41.1	45.3	32.0	44.6	54.3	75.9	61.8	57.1
CodeLlama-34B-Instruct	28.8	28.8	33.7	35.8	28.8	37.5	44.6	80.0	82.0	82.3
	Or	en-Sour	ce Mode	$\bar{l}s = 30$	Б) —					
Llama-3.1-8B-Instruct	31.4	31.8	38.4	40.0	31.7	43.2	51.8	80.9	80.2	83.7
DeepSeek-Coder-V2-Lite-Instruct	38.3	38.3	43.4	46.1	38.3	47.0	<u>51.4</u>	76.3	75.8	76.9
DeepSeek-Coder-6.7B-Instruct	35.2	35.2	37.7	37.5	35.2	43.3	48.2	82.8	82.5	83.1
ReflectionCoder-DS-6.7B	37.4	37.4	39.6	40.7	37.4	44.7	50.4	79.1	79.6	78.9
CodeQwen1.5-7B-Chat	39.3	39.6	40.1	<u>41.1</u>	39.5	<u>45.8</u>	49.5	74.4	74.7	77.4
StarCoder2-15B-Instruct-v0.1	37.1	37.1	39.3	40.0	37.1	42.6	46.3	76.9	76.8	75.6
CodeLlama-13B-Instruct	28.4	28.4	29.7	30.0	28.4	35.1	41.1	69.0	70.7	71.6
CodeLlama-7B-Instruct	21.8	21.8	22.9	23.0	21.8	26.2	30.5	61.7	53.9	55.2

Table 7: MRR results on CONVCODEWORLD. X indicates that no feedback of that type is provided Table 8: Recall results on CONVCODEWORLD. X indicates that no feedback of that type is provided experiments, except for the R1-Distill models, which are set to 16K.

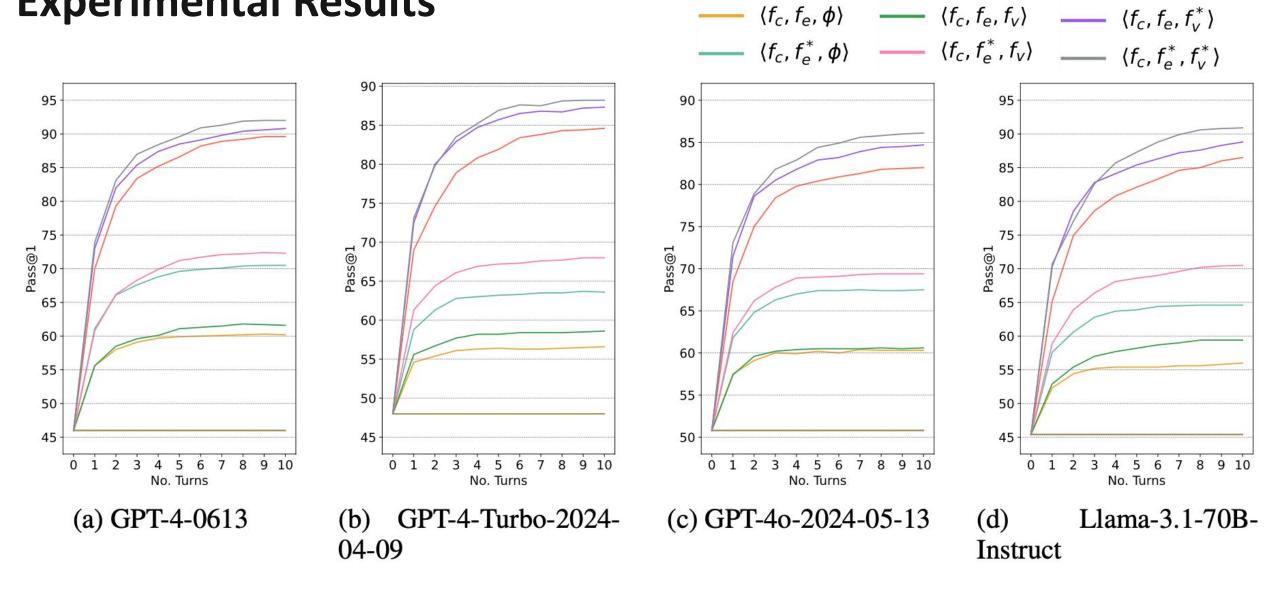
		950								
Compilation Feedback	X	f_c	f_c	f_c	${f}_c$	f_c	f_c	f_c	${f}_{c}$	f_c
Execution Feedback	X	X	$f_{m{e}}$	f_e^*	X	f_{e}	$f_e^{m{st}}$	X	$f_{m{e}}$	f_e^*
Verbal Feedback	X	X	X	X	f_v	f_v	f_v	f_v^*	f_v^*	f_v^*
		Closed	l-Source	Models						
GPT-4-0613	46.0	46.0	<u>52.1</u>	<u>56.1</u>	46.0	52.4	<u>56.4</u>	63.1	64.3	64.8
GPT-4-Turbo-2024-04-09	48.0	48.0	51.8	54.8	48.0	52.6	56.4	62.4	64.3	64.5
GPT-4o-2024-05-13	50.8	50.8	55.0	57.9	50.8	55.1	58.6	63.3	64.7	65.3
	O	pen-Sour	ce Mode	els (≥ 30	JB)					
DeepSeek-R1-Distill-Llama-70B (16K)	46.1	46.2	51.7	55.2	46.2	51.3	55.3	58.0	59.5	59.7
Llama-3.3-70B-Instruct	47.6	47.7	52.6	56.0	47.7	53.3	57.0	61.6	63.9	64.1
DeepSeek-K1-Distill-Qwen-32B (16K)	45.9	45.9	51.2	54.3	45.9	51.7	<u> </u>	60.3	61.4	62.4
Qwen2.5-32B	45.8	45.8	47.9	49.5	45.8	49.8	53.4	61.6	<u>62.7</u>	<u>63.8</u>
Llama-3.1-70B-Instruct	45.4	45.4	49.9	53.4	45.4	50.8	55.2	60.7	62.6	63.3
DeepSeek-Coder-33B-Instruct	41.6	41.6	43.4	43.6	41.6	45.5	48.0	58.6	58.5	58.8
ReflectionCoder-DS-33B	41.6	41.6	42.9	42.9	41.6	45.6	48.1	57.7	58.2	58.91
Qwen1.5-72B-Chat	32.9	33.0	35.8	38.3	33.0	38.6	41.4	50.6	52.0	52.7
Qwen1.5-32B-Chat	32.0	32.0	35.3	36.7	32.0	36.6	39.7	47.4	42.6	40.8
CodeLlama-34B-Instruct	28.8	28.8	31.0	31.9	28.8	32.5	35.1	48.7	49.2	49.8
	$-\bar{o}$	pen-Sour	ce Mode	els(< 30)B)					
Llama-3.1-8B-Instruct	31.4	31.5	34.0	34.6	31.5	36.1	39.1	49.4	49.8	51.3
DeepSeek-Coder-V2-Lite-Instruct	38.3	38.3	40.5	41.7	38.3	42.0	43.8	52.7	52.9	53.3
DeepSeek-Coder-6.7B-Instruct	35.2	35.2	36.2	36.1	35.2	38.8	40.5	53.3	53.2	53.9
ReflectionCoder-DS-6.7B	37.4	37.4	38.3	38.7	37.4	40.4	42.4	53.3	53.8	53.6
CodeQwen1.5-7B-Chat	39.3	39.4	39.7	40.1	39.3	42.0	43.7	53.7	53.5	54.8
StarCoder2-15B-Instruct-v0.1	37.1	37.1	37.9	38.3	37.1	39.4	40.5	52.7	52.8	52.1
CodeLlama-13B-Instruct	28.4	28.4	29.0	29.0	28.4	31.2	33.0	43.9	44.3	44.8
CodeLlama-7B-Instruct	21.8	21.8	22.3	22.3	21.8	23.5	25.2	35.0	33.4	33.9

(ϕ). The leftmost results, with three X, represent $\Omega = \langle \phi, \phi, \phi \rangle$, corresponding to single-turn code (ϕ). The leftmost results, with three X, represent $\Omega = \langle \phi, \phi, \phi \rangle$, corresponding to single-turn code generation without any feedback. For each column, bold and underscore indicate 1st and 2nd place generation without any feedback. For each column, bold and underscore indicate 1st and 2nd place performance within the same model group. Maximum token length is set to 8K throughout the performance within the same model group. Maximum token length is set to 8K throughout the experiments, except for the R1-Distill models, which are set to 16K.

Compilation Feedback	Х	f_c	f_c	f_c	f_c	f_c	f_c	f_c	f_c	f_c
Execution Feedback	X	X	f_e	$f_e^{oldsymbol{st}}$	X	f_e	f_e^*	X	f_e	$f_e^* \\ f_v^*$
Verbal Feedback	X	X	X	X	f_v	f_v	f_v	$f_v^{oldsymbol{st}}$	f_v^*	f_n^*
Closed-Source Models										
GPT-4-0613	46.0	46.0	60.3	70.5	46.0	61.9	72.5	89.7	91.1	92.5
GPT-4-Turbo-2024-04-09	48.0	48.0	56.7	63.8	48.0	58.6	68.1	84.7	87.5	88.5
GPT-4o-2024-05-13	50.8	50.8	60.5	67.6	50.8	60.8	69.6	82.3	84.9	86.2
	Or	en-Sour	ce Mode	s = 30	B)					
DeepSeek-R1-Distill-Llama-70B (16K)	46.1	46.2	61.7	72.7	46.2	60.2	73.8	82.0	86.8	86.1
Llama-3.3-70B-Instruct	47.6	47.7	59.0	67.7	47.7	61.5	72.2	84.6	87.6	88.9
DeepSeek-R1-Distill-Qwen-32B (16K)	45.9	45.9	<u>59.5</u>	68.1	45.9	61.2	74.0	85.0	88.1	89.0
Qwen2.5-32B	45.8	45.9	50.4	53.9	46.0	54.8	62.6	84.7	85.5	87.5
Llama-3.1-70B-Instruct	45.4	45.4	56.2	64.8	45.4	59.5	70.8	86.7	88.9	91.8
DeepSeek-Coder-33B-Instruct	41.6	41.6	45.5	46.1	41.6	50.4	56.6	85.4	84.6	85.6
ReflectionCoder-DS-33B	41.6	41.6	45.3	44.9	41.6	51.4	57.2	81.4	81.8	84.2
Qwen1.5-72B-Chat	32.9	33.2	39.9	<u>47.5</u>	33.2	47.5	57.9	84.4	86.1	87.2
Qwen1.5-32B-Chat	32.0	32.0	41.1	45.3	32.0	44.6	54.3	75.9	61.8	57.1
CodeLlama-34B-Instruct	28.8	28.8	33.7	35.8	28.8	37.5	44.6	80.0	82.0	82.3
	Or	en-Sour	e Model	s < 30	B)					
Llama-3.1-8B-Instruct	31.4	31.8	38.4	40.0	31.7	43.2	51.8	80.9	80.2	83.7
DeepSeek-Coder-V2-Lite-Instruct	38.3	38.3	43.4	46.1	38.3	47.0	51.4	76.3	75.8	76.9
DeepSeek-Coder-6.7B-Instruct	35.2	35.2	37.7	37.5	35.2	43.3	48.2	82.8	82.5	83.1
ReflectionCoder-DS-6.7B	37.4	37.4	39.6	40.7	37.4	44.7	50.4	79.1	79.6	78.9
CodeQwen1.5-7B-Chat	39.3	39.6	40.1	41.1	39.5	45.8	49.5	74.4	74.7	77.4
StarCoder2-15B-Instruct-v0.1	37.1	37.1	39.3	40.0	37.1	42.6	46.3	76.9	76.8	75.6
CodeLlama-13B-Instruct	28.4	28.4	29.7	30.0	28.4	35.1	41.1	69.0	70.7	71.6
CodeLlama-7B-Instruct	21.8	21.8	22.9	23.0	21.8	26.2	30.5	61.7	53.9	55.2

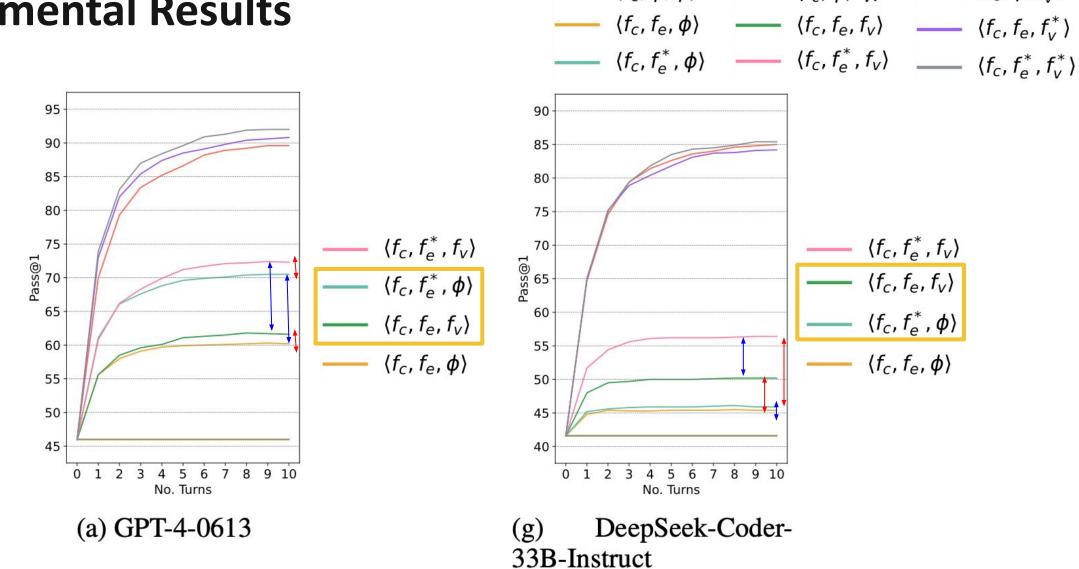

Trend difference between MRR and Recall

- MRR of Closed-Source and Open-Source (>= 30B): Clear winner exists
- Recall: No clear winners

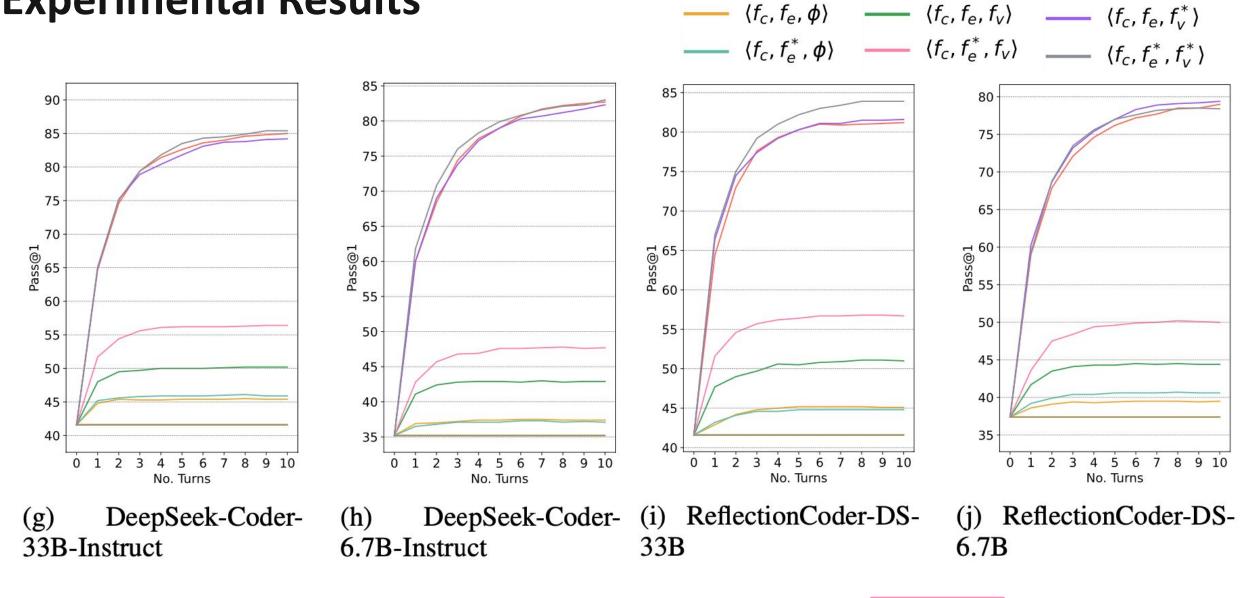

Table 8: Recall results on CONVCODEWORLD. \times indicates that no feedback of that type is provided (ϕ) . The leftmost results, with three \times , represent $\Omega = \langle \phi, \phi, \phi \rangle$, corresponding to single-turn code generation without any feedback. For each column, bold and underscore indicate 1st and 2nd place performance within the same model group. Maximum token length is set to 8K throughout the experiments, except for the R1-Distill models, which are set to 16K.

Compilation Feedback	X	f_c	f_c	f_c	f_c	f_c	f_c	f_c	f_c	f_c	
Execution Feedback	X	X	f_e	f_e^*	X	f_e	$f_e^{oldsymbol{st}}$	X	$f_{m{e}}$	$f_e^{m{*}} \ f_v^{m{*}}$	
Verbal Feedback	X	X	X	X	f_v	f_v	f_v	$f_v^{oldsymbol{st}}$	$f_v^{oldsymbol{st}}$	f_v^*	
-	Closed-Source Models										
GPT-4-0613	46.0	46.0	60.3	70.5	46.0	61.9	72.5	89.7	91.1	92.5	
GPT-4-Turbo-2024-04-09	48.0	48.0	56.7	63.8	48.0	58.6	68.1	84.7	87.5	88.5	
GPT-4o-2024-05-13	50.8	50.8	60.5	67.6	50.8	60.8	<u>69.6</u>	82.3	84.9	86.2	
	Op	en-Sourc	e Model	ls = 30	B)					-	
DeepSeek-R1-Distill-Llama-70B (16K)	<u>46.1</u>	<u>46.2</u>	61.7	72.7	46.2	60.2	73.8	82.0	86.8	86.1	
Llama-3.3-70B-Instruct	47.6	47.7	59.0	67.7	47.7	61.5	72.2	84.6	87.6	88.9	
DeepSeek-R1-Distill-Qwen-32B (16K)	45.9	45.9	<u>59.5</u>	<u>68.1</u>	45.9	61.2	74.0	85.0	88.1	89.0	
Qwen2.5-32B	45.8	45.9	50.4	53.9	46.0	54.8	62.6	84.7	85.5	87.5	
Llama-3.1-70B-Instruct	45.4	45.4	56.2	64.8	45.4	59.5	70.8	86.7	88.9	91.8	
DeepSeek-Coder-33B-Instruct	41.6	41.6	45.5	46.1	41.6	50.4	56.6	85.4	84.6	85.6	
ReflectionCoder-DS-33B	41.6	41.6	45.3	44.9	41.6	51.4	57.2	81.4	81.8	84.2	
Qwen1.5-72B-Chat	32.9	33.2	39.9	47.5	33.2	47.5	57.9	84.4	86.1	87.2	
Qwen1.5-32B-Chat	32.0	32.0	41.1	45.3	32.0	44.6	54.3	75.9	61.8	57.1	
CodeLlama-34B-Instruct	28.8	28.8	33.7	35.8	28.8	37.5	44.6	80.0	82.0	82.3	
	Op	en-Sourc	e Model	ls = 30	B)						
Llama-3.1-8B-Instruct	31.4	31.8	38.4	40.0	31.7	43.2	51.8	80.9	80.2	83.7	
DeepSeek-Coder-V2-Lite-Instruct	38.3	38.3	43.4	46.1	38.3	47.0	<u>51.4</u>	76.3	75.8	76.9	
DeepSeek-Coder-6.7B-Instruct	35.2	35.2	37.7	37.5	35.2	43.3	48.2	82.8	82.5	83.1	
ReflectionCoder-DS-6.7B	37.4	37.4	39.6	40.7	37.4	44.7	50.4	79.1	79.6	78.9	
CodeQwen1.5-7B-Chat	39.3	39.6	40.1	41.1	39.5	45.8	49.5	74.4	74.7	77.4	
StarCoder2-15B-Instruct-v0.1	37.1	37.1	39.3	40.0	37.1	42.6	46.3	76.9	76.8	75.6	
CodeLlama-13B-Instruct	28.4	28.4	29.7	30.0	28.4	35.1	41.1	69.0	70.7	71.6	
CodeLlama-7B-Instruct	21.8	21.8	22.9	23.0	21.8	26.2	30.5	61.7	53.9	55.2	

With Expert-level Feedback, even DeepSeek-Coder-6.7B-Instruct is comparable to GPT-4o-2024-05-13



Weaker LLMs, with sufficient feedback, can outperform single-turn results of state-of-the-art LLMs without feedback.



 $--- \langle f_c, \phi, \phi \rangle$ $--- \langle f_c, \phi, f_v \rangle$ $--- \langle f_c, \phi, f_v^* \rangle$

LLM performance varies significantly based on the feedback provided.

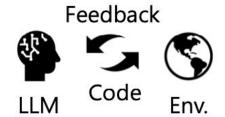
Adding novice-level feedback (f_v) is more effective to open-sourced models. Improving test coverage for execution feedback (f_e^*) is more effective to closed-source models.

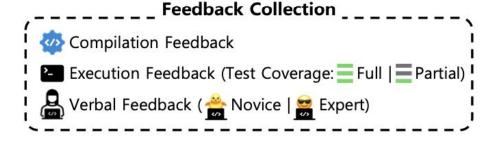
 $--- \langle f_c, \phi, \phi \rangle$ $--- \langle f_c, \phi, f_v \rangle$ $--- \langle f_c, \phi, f_v^* \rangle$

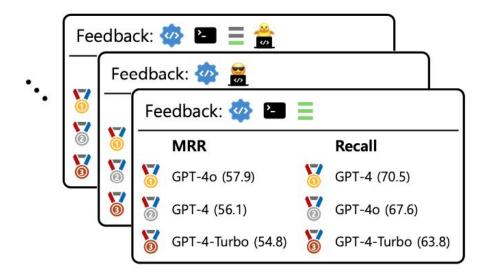
ReflectionCoder-DS: DeepSeek-Coder + SFT on $\langle f_c, f_e^*, f_v \rangle$ Training on a specific feedback combination can limit an LLM's ability to utilize unseen combinations.

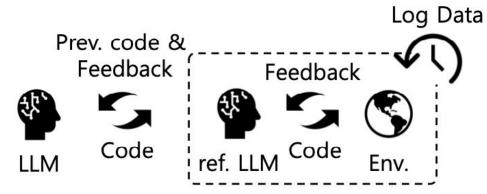
Table 8: Recall results on CONVCODEWORLD. \times indicates that no feedback of that type is provided (ϕ) . The leftmost results, with three \times , represent $\Omega = \langle \phi, \phi, \phi \rangle$, corresponding to single-turn code generation without any feedback. For each column, bold and underscore indicate 1st and 2nd place performance within the same model group. Maximum token length is set to 8K throughout the experiments, except for the R1-Distill models, which are set to 16K.

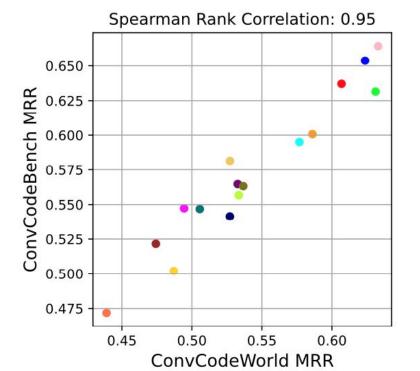
Compilation Feedback	X	f_c	f_c	f_c	f_c	f_c	f_c	f_c	f_c	f_c
Execution Feedback	X	X	f_e	$f_e^{oldsymbol{st}}$	X	f_e	$f_e^{oldsymbol{st}}$	X	f_e	$f_e^{oldsymbol{st}} \ f_v^{oldsymbol{st}}$
Verbal Feedback	X	X	X	X	f_v	f_v	$\widetilde{f_v}$	f_v^*	f_v^*	f_{n}^{*}
Closed-Source Models										
GPT-4-0613	46.0	46.0	60.3	70.5	46.0	61.9	72.5	89.7	91.1	92.5
GPT-4-Turbo-2024-04-09	48.0	48.0	56.7	63.8	48.0	58.6	68.1	84.7	87.5	88.5
GPT-4o-2024-05-13	50.8	50.8	60.5	67.6	50.8	60.8	69.6	82.3	84.9	86.2
	Op	en-Sour	ce Model	s = 30	Б) —					
DeepSeek-R1-Distill-Llama-70B (16K)	<u>46.1</u>	<u>46.2</u>	61.7	72.7	<u>46.2</u>	60.2	73.8	82.0	86.8	86.1
Llama-3.3-70B-Instruct	47.6	47.7	59.0	67.7	47.7	61.5	72.2	84.6	87.6	88.9
DeepSeek-R1-Distill-Qwen-32B (16K)	45.9	45.9	<u>59.5</u>	<u>68.1</u>	45.9	61.2	74.0	85.0	88.1	89.0
Qwen2.5-32B	45.8	45.9	50.4	53.9	46.0	54.8	62.6	84.7	85.5	87.5
Llama-3.1-70B-Instruct	45.4	45.4	56.2	64.8	45.4	59.5	70.8	86.7	88.9	91.8
DeepSeek-Coder-33B-Instruct	41.6	41.6	45.5	46.1	41.6	50.4	56.6	<u>85.4</u>	84.6	85.6
ReflectionCoder-DS-33B	41.6	41.6	45.3	44.9	41.6	51.4	57.2	81.4	81.8	84.2
Qwen1.5-72B-Chat	32.9	33.2	39.9	<u>47.5</u>	33.2	47.5	57.9	84.4	86.1	87.2
Qwen1.5-32B-Chat	32.0	32.0	41.1	45.3	32.0	44.6	54.3	75.9	61.8	57.1
CodeLlama-34B-Instruct	28.8	28.8	33.7	35.8	28.8	37.5	44.6	80.0	82.0	82.3
	Op	en-Sour	ce Model	s < 30	B)					
Llama-3.1-8B-Instruct	31.4	31.8	38.4	40.0	31.7	43.2	51.8	80.9	80.2	83.7
DeepSeek-Coder-V2-Lite-Instruct	38.3	38.3	43.4	46.1	38.3	47.0	51.4	76.3	75.8	76.9
DeepSeek-Coder-6.7B-Instruct	35.2	35.2	37.7	37.5	35.2	43.3	48.2	82.8	82.5	<u>83.1</u>
ReflectionCoder-DS-6.7B	37.4	37.4	39.6	40.7	37.4	44.7	50.4	79.1	79.6	78.9
CodeQwen1.5-7B-Chat	39.3	39.6	<u>40.1</u>	<u>41.1</u>	39.5	<u>45.8</u>	49.5	74.4	74.7	77.4
StarCoder2-15B-Instruct-v0.1	37.1	37.1	39.3	40.0	37.1	42.6	46.3	76.9	76.8	75.6
CodeLlama-13B-Instruct	28.4	28.4	29.7	30.0	28.4	35.1	41.1	69.0	70.7	71.6
CodeLlama-7B-Instruct	21.8	21.8	22.9	23.0	21.8	26.2	30.5	61.7	53.9	55.2


Training on a specific feedback combination can limit an LLM's ability to utilize unseen combinations.





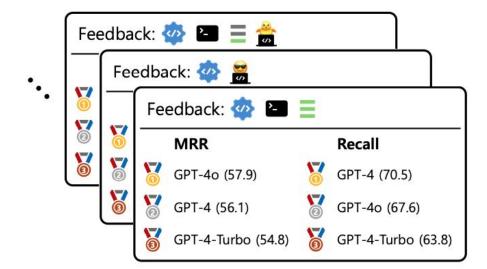

A Reproducible Environment with Diverse Feedback Combinations


A Cost-Effective Benchmark Strongly Correlates to CONVCODEWORLD

A Reproducible Environment with Diverse Feedback Combinations

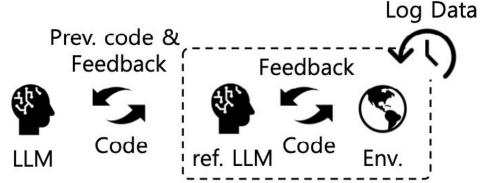
Feedback

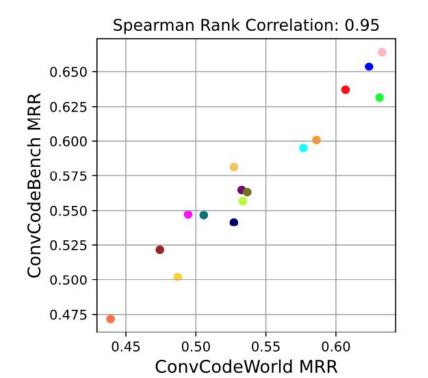


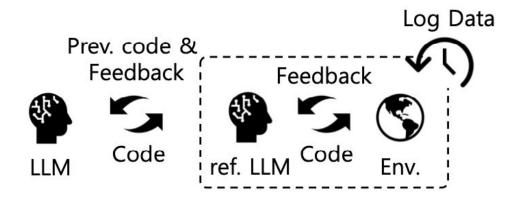


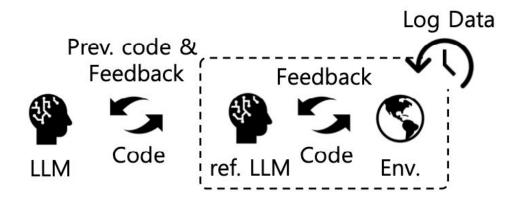
LLM

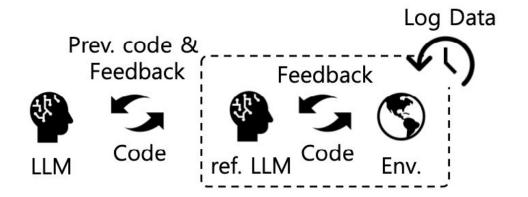
Code Env.


Feedback Collection _

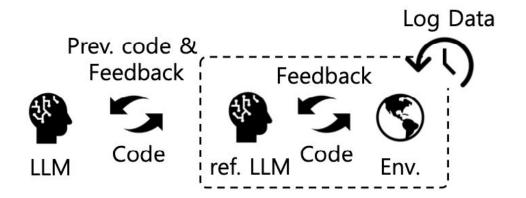




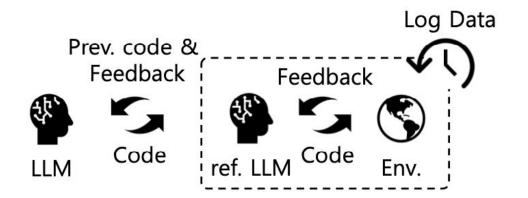

A Cost-Effective Benchmark Strongly Correlates to CONVCODEWORLD



Pre-generated conversations by a fixed reference model

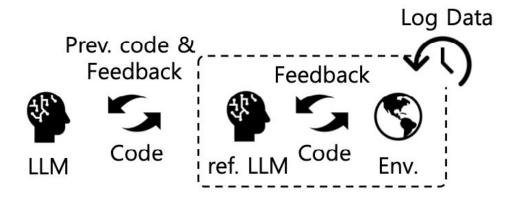

Pre-generated conversations by a fixed reference model

- Elimination of Dependency on External LLMs or APIs for Verbal Feedback Generation


Pre-generated conversations by a fixed reference model

- Elimination of Dependency on External LLMs or APIs for Verbal Feedback Generation
- Parallel Processing of Inference Calls

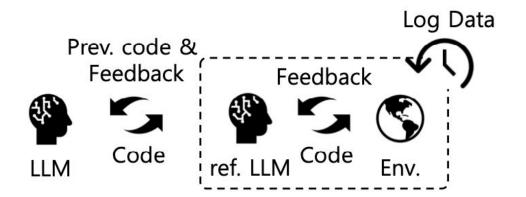
Pre-generated conversations by a fixed reference model


- Elimination of Dependency on External LLMs or APIs for Verbal Feedback Generation
- Parallel Processing of Inference Calls
- Enhanced Reproducibility

Pre-generated conversations by a fixed reference model

- Elimination of Dependency on External LLMs or APIs for Verbal Feedback Generation
- Parallel Processing of Inference Calls
- Enhanced Reproducibility

Question: Can we ensure high correlation between ConvCodeWorld and ConvCodeBench?

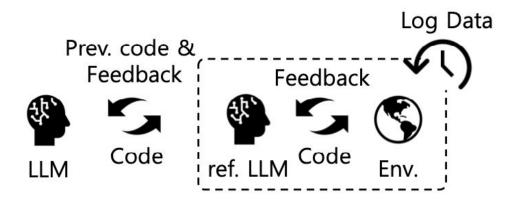


Pre-generated conversations by a fixed reference model

- Elimination of Dependency on External LLMs or APIs for Verbal Feedback Generation
- Parallel Processing of Inference Calls
- Enhanced Reproducibility

Question: Can we ensure high correlation between ConvCodeWorld and ConvCodeBench?

→ by selecting an appropriate reference model


Pre-generated conversations by a fixed reference model

- Elimination of Dependency on External LLMs or APIs for Verbal Feedback Generation
- Parallel Processing of Inference Calls
- Enhanced Reproducibility

Question: Can we ensure high correlation between ConvCodeWorld and ConvCodeBench?

→ by selecting an appropriate reference model

Model	Pass@1					
Wiodei	Turn 0	Turn 10				
CodeLlama-7B-Instruct	21.8	55.2				
DeepSeek-Coder-6.7B-Instruct	35.2	83.1				
GPT-4-0613	46.0	92.5				

Pre-generated conversations by a fixed reference model

- Elimination of Dependency on External LLMs or APIs for Verbal Feedback Generation
- Parallel Processing of Inference Calls
- Enhanced Reproducibility

Question: Can we ensure high correlation between ConvCodeWorld and ConvCodeBench?

→ by selecting an appropriate reference model

Model	Pass@1				
Wiodei	Turn 0	Turn 10			
CodeLlama-7B-Instruct	21.8	55.2			
DeepSeek-Coder-6.7B-Instruct	35.2	83.1			
GPT-4-0613	46.0	92.5			

Our hypothesis: *Use the weakest model*

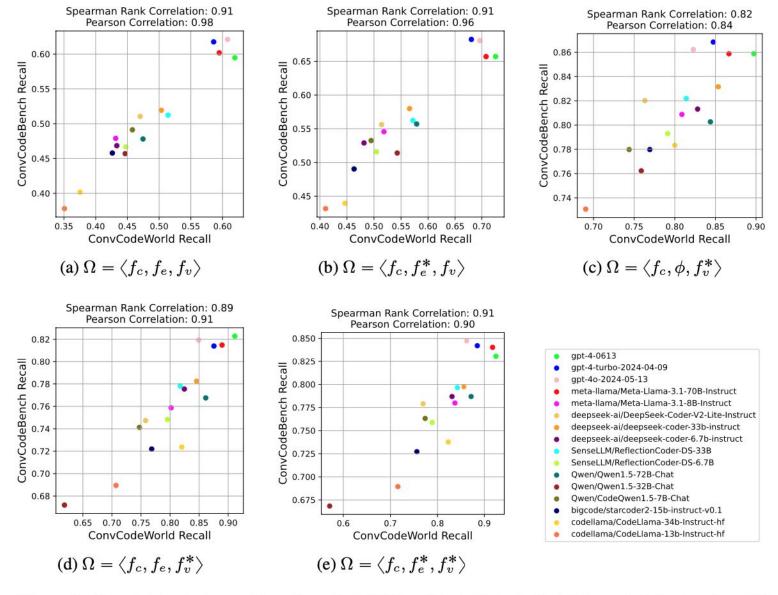


Figure 6: Correlation between Recall on CONVCODEBENCH (ref. CodeLlama-7B-Instruct) and Recall on CONVCODEWORLD with different feedback combinations Ω .

ConvCodeBench (ref. GPT-4-0613)

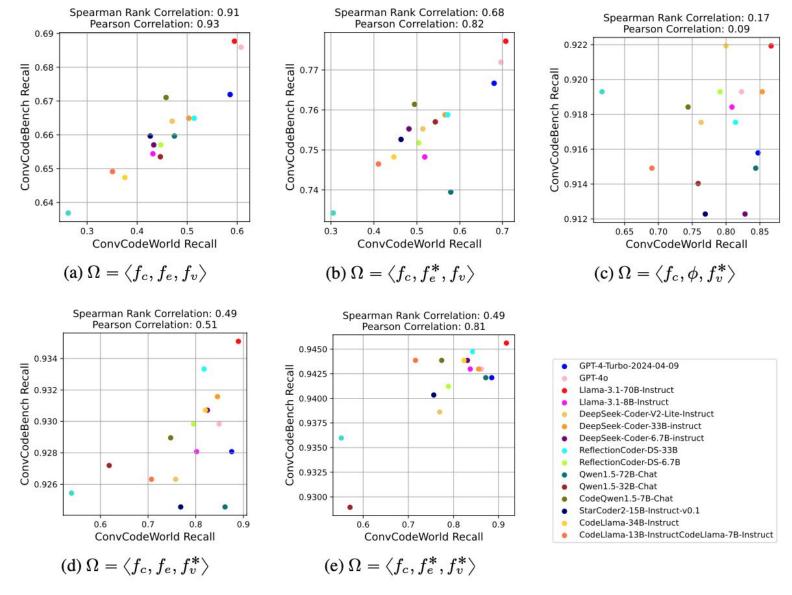
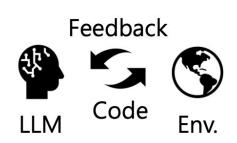
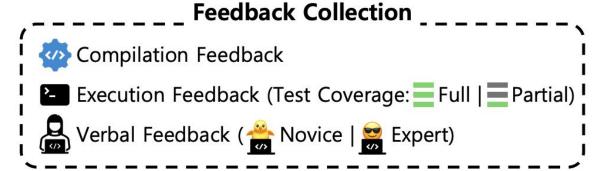
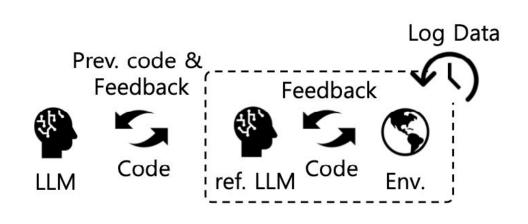
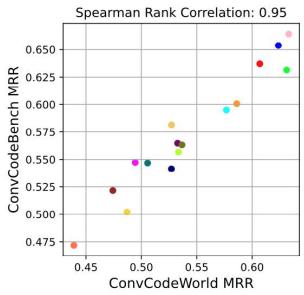
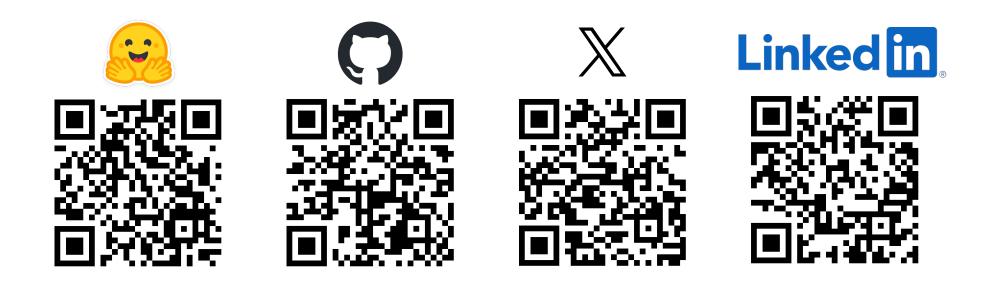




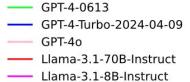
Figure 10: Correlation between Recall on CONVCODEBENCH (ref. GPT-4-0613) and Recall on CONVCODEWORLD with different feedback combinations Ω .

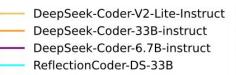

Summary


- ConvCodeWorld: a novel and reproducible environment for benchmarking interactive code generation
 - 9 distinct interactive code generation scenarios combining three types of feedback:



- ConvCodeBench: a static version of benchmark that uses pre-generated feedback logs
 - eliminates the need for costly dynamic verbal feedback generation while maintaining strong Spearman's rank correlations (0.82 to 0.99) with ConvCodeWorld


Any Questions?



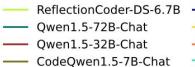
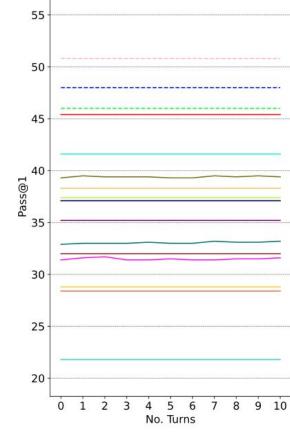
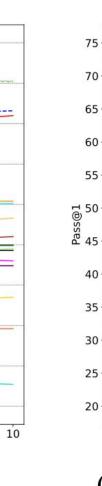

Appendix

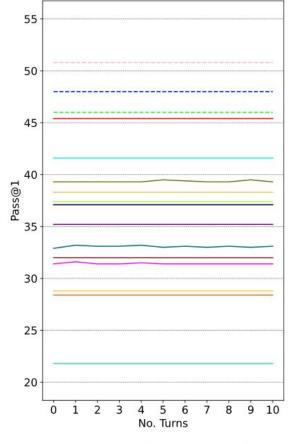
Table 7: MRR results on CONVCODEWORLD. \checkmark indicates that no feedback of that type is provided (ϕ) . The leftmost results, with three \checkmark , represent $\Omega = \langle \phi, \phi, \phi \rangle$, corresponding to single-turn code generation without any feedback. For each column, bold and underscore indicate 1st and 2nd place performance within the same model group. Maximum token length is set to 8K throughout the experiments, except for the R1-Distill models, which are set to 16K.

Compilation Feedback	X	f_c	f_c	f_c	f_c	f_c	f_c	f_c	f_c	f_c
Execution Feedback	X	X	f_{e}	$f_e^{m{st}}$	X	$f_{m{e}}$	$f_e^{oldsymbol{st}}$	X	$f_{m{e}}$	$f_e^{m{*}} \ f_v^{m{*}}$
Verbal Feedback	X	X	X	X	f_v	$f_{m{v}}$	f_v	$f_v^{oldsymbol{st}}$	$f_v^{oldsymbol{st}}$	f_{v}^{*}
Closed-Source Models										
GPT-4-0613	46.0	46.0	52.1	<u>56.1</u>	46.0	52.4	56.4	63.1	64.3	64.8
GPT-4-Turbo-2024-04-09	48.0	48.0	51.8	54.8	48.0	<u>52.6</u>	56.4	62.4	64.3	64.5
GPT-4o-2024-05-13	50.8	50.8	55.0	57.9	50.8	55.1	58.6	63.3	64.7	65.3
Open-Source Models ($\geqslant 30B$)										
DeepSeek-R1-Distill-Llama-70B (16K)	<u>46.1</u>	46.2	<u>51.7</u>	55.2	46.2	51.3	55.3	58.0	59.5	59.7
Llama-3.3-70B-Instruct	47.6	47.7	52.6	56.0	47.7	53.3	57.0	61.6	63.9	64.1
DeepSeek-R1-Distill-Qwen-32B (16K)	45.9	45.9	51.2	<u>54.3</u>	45.9	<u>51.7</u>	<u>55.8</u>	60.3	61.4	62.4
Qwen2.5-32B	45.8	45.8	47.9	49.5	45.8	49.8	53.4	61.6	<u>62.7</u>	63.8
Llama-3.1-70B-Instruct	45.4	45.4	49.9	53.4	45.4	50.8	55.2	60.7	62.6	63.3
DeepSeek-Coder-33B-Instruct	41.6	41.6	43.4	43.6	41.6	45.5	48.0	58.6	58.5	58.8
ReflectionCoder-DS-33B	41.6	41.6	42.9	42.9	41.6	45.6	48.1	57.7	58.2	58.91
Qwen1.5-72B-Chat	32.9	33.0	35.8	38.3	33.0	38.6	41.4	50.6	52.0	52.7
Qwen1.5-32B-Chat	32.0	32.0	35.3	36.7	32.0	36.6	39.7	47.4	42.6	40.8
CodeLlama-34B-Instruct	28.8	28.8	31.0	31.9	28.8	32.5	35.1	48.7	49.2	49.8
Open-Source Models (< 30B)										
Llama-3.1-8B-Instruct	31.4	31.5	34.0	34.6	31.5	36.1	39.1	49.4	49.8	51.3
DeepSeek-Coder-V2-Lite-Instruct	<u>38.3</u>	38.3	40.5	41.7	38.3	42.0	43.8	52.7	52.9	53.3
DeepSeek-Coder-6.7B-Instruct	35.2	35.2	36.2	36.1	35.2	38.8	40.5	<u>53.3</u>	53.2	<u>53.9</u>
ReflectionCoder-DS-6.7B	37.4	37.4	38.3	38.7	37.4	40.4	42.4	<u>53.3</u>	53.8	53.6
CodeQwen1.5-7B-Chat	39.3	39.4	<u>39.7</u>	<u>40.1</u>	39.3	42.0	<u>43.7</u>	53.7	<u>53.5</u>	54.8
StarCoder2-15B-Instruct-v0.1	37.1	37.1	37.9	38.3	37.1	39.4	40.5	52.7	52.8	52.1
CodeLlama-13B-Instruct	28.4	28.4	29.0	29.0	28.4	31.2	33.0	43.9	44.3	44.8
CodeLlama-7B-Instruct	21.8	21.8	22.3	22.3	21.8	23.5	25.2	35.0	33.4	33.9

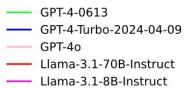


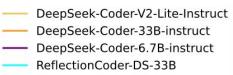

StarCoder2-15B-Instruct-v0.1 CodeLlama-34B-Instruct CodeLlama-13B-Instruct

CodeLlama-7B-Instruct

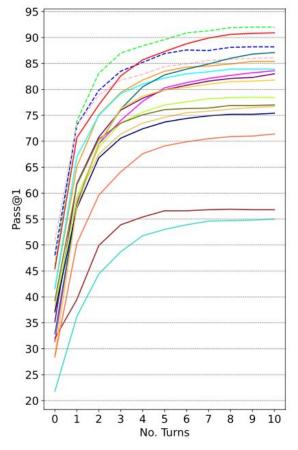

No. Turns No. Turns (a)
$$\Omega = \langle f_c, \phi, \phi
angle$$
 (b) $\Omega = \langle f_c, f_e, \phi
angle$

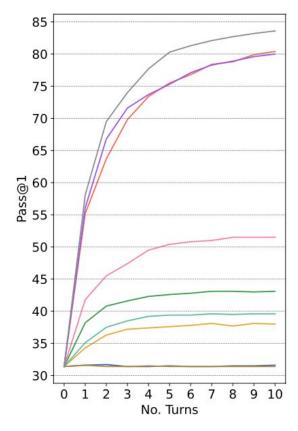
Pass@1

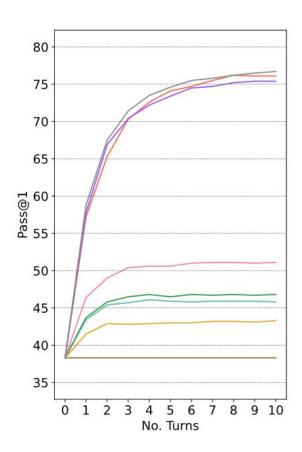


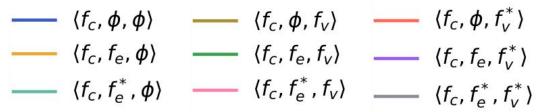

(c)
$$\Omega = \langle f_c, f_e^*, \phi \rangle$$

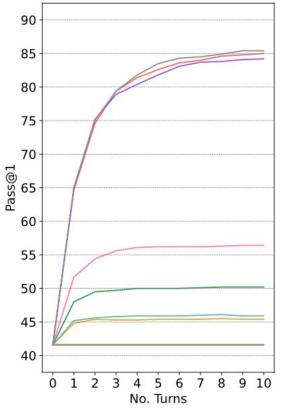
No. Turns


(d)
$$\Omega = \langle f_c, \phi, f_v \rangle$$

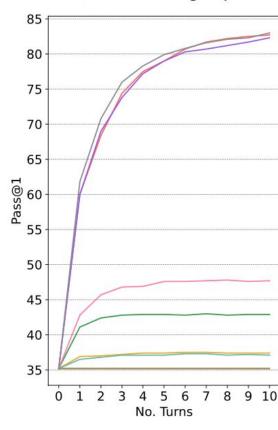



StarCoder2-15B-Instruct-v0.1 CodeLlama-34B-Instruct CodeLlama-13B-Instruct

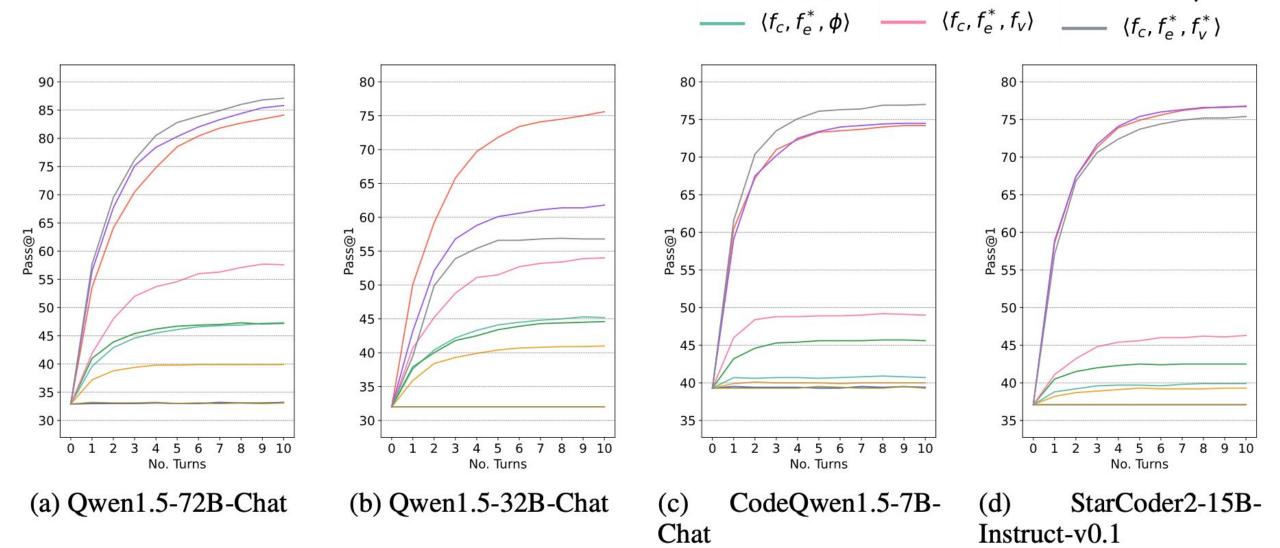

(i)
$$\Omega = \langle f_c, f_e^*, f_v^* \rangle$$



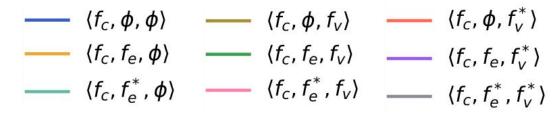
(e) Llama-3.1-8B-Instruct

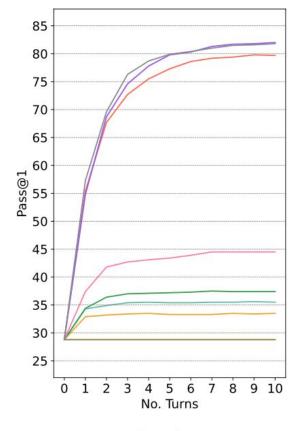


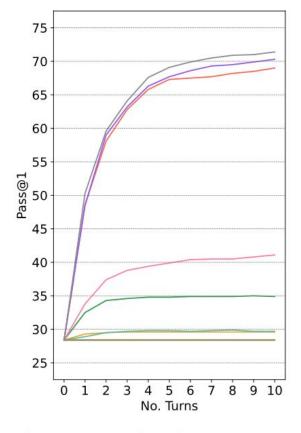
(f) DeepSeek-Coder-V2-Lite-Instruct

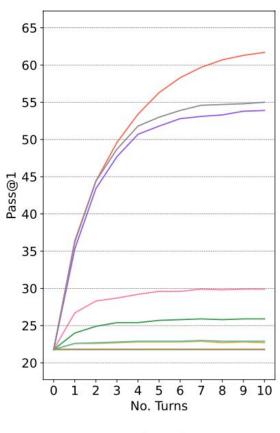


(g) DeepSeek-Coder-33B-Instruct




(h) DeepSeek-Coder-6.7B-Instruct




 $--- \langle f_c, \phi, \phi \rangle$ $--- \langle f_c, \phi, f_v \rangle$ $--- \langle f_c, \phi, f_v^* \rangle$

 $--- \langle f_c, f_e, f_v \rangle ---- \langle f_c, f_e, f_v^* \rangle$

(e) CodeLlama-34B-Instruct

(f) CodeLlama-13B-Instruct

(g) CodeLlama-7B-Instruct

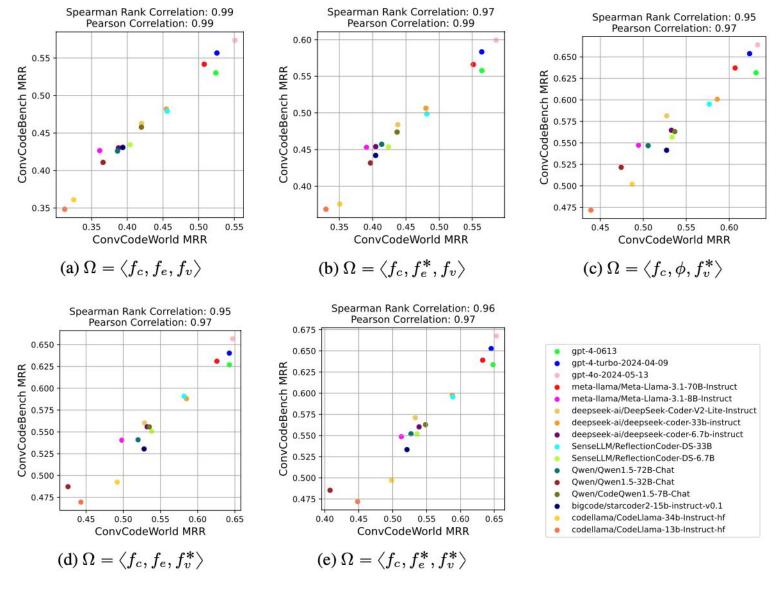


Figure 2: Correlation between MRR on CONVCODEBENCH (ref. CodeLlama-7B-Instruct) and MRR on CONVCODEWORLD with different feedback combinations Ω .

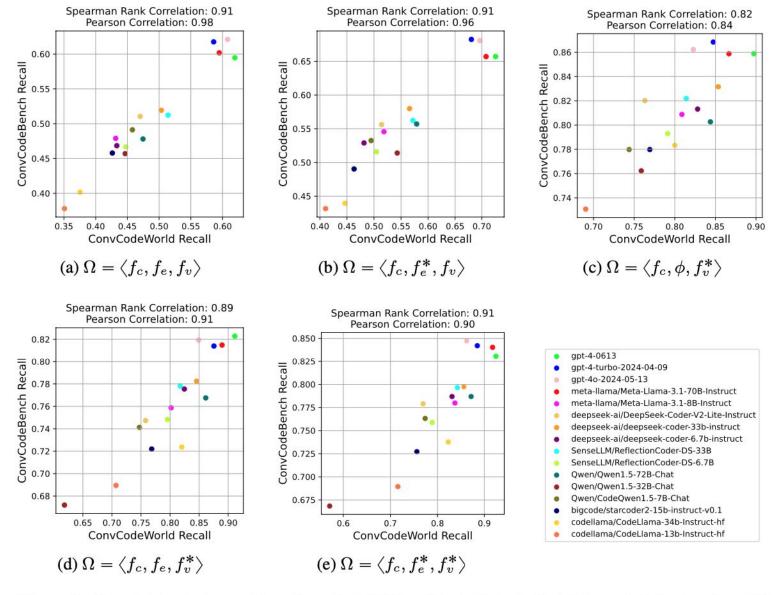


Figure 6: Correlation between Recall on CONVCODEBENCH (ref. CodeLlama-7B-Instruct) and Recall on CONVCODEWORLD with different feedback combinations Ω .

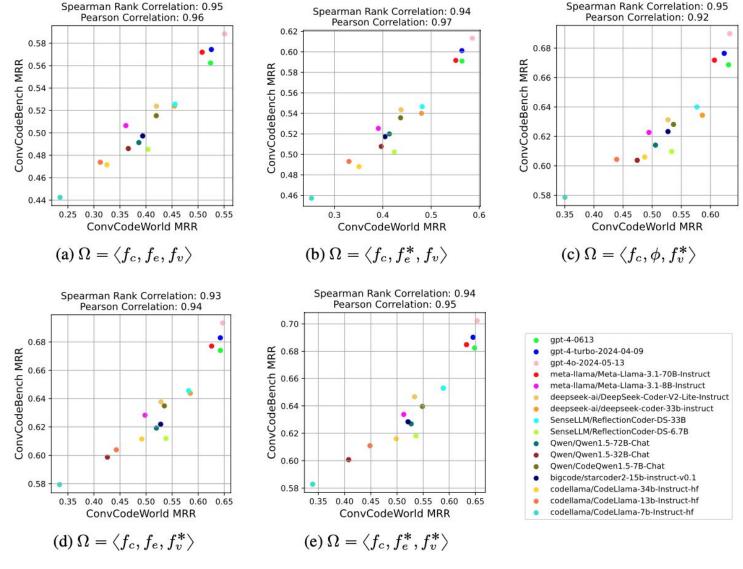


Figure 7: Correlation between MRR on CONVCODEBENCH (ref. DeepSeek-Coder-6.7B-Instruct) and MRR on CONVCODEWORLD with different feedback combinations Ω.

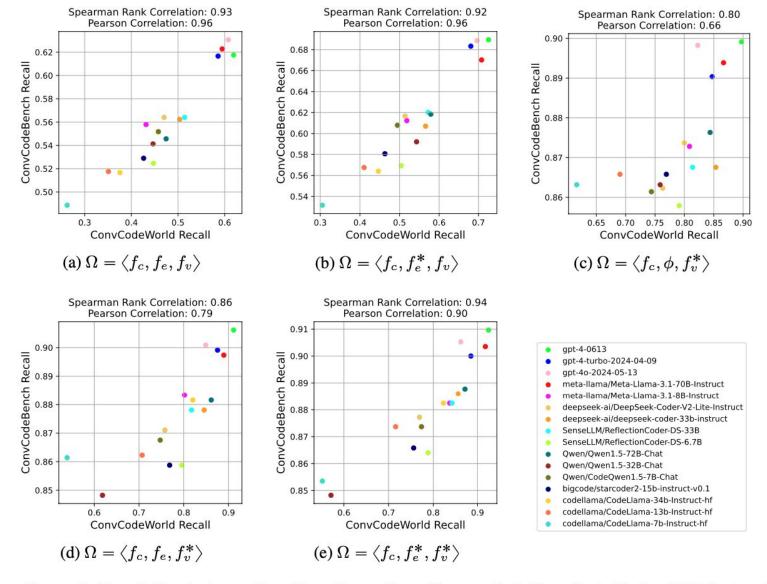


Figure 8: Correlation between Recall on CONVCODEBENCH (ref. DeepSeek-Coder-6.7B-Instruct) and Recall on CONVCODEWORLD with different feedback combinations Ω .

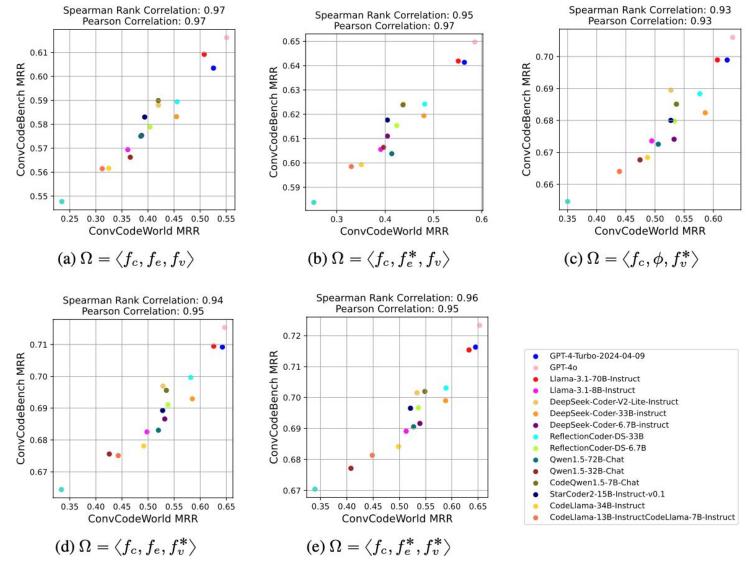


Figure 9: Correlation between MRR on CONVCODEBENCH (ref. GPT-4-0613) and MRR on CONVCODEWORLD with different feedback combinations Ω .

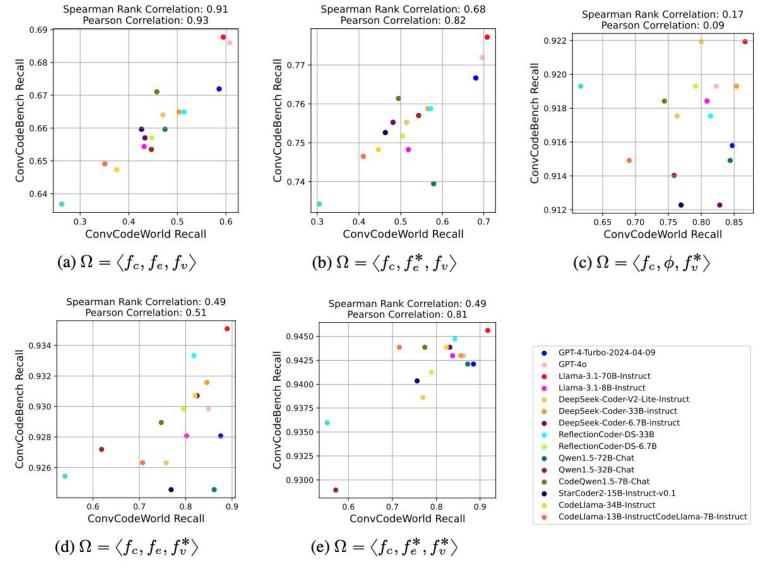


Figure 10: Correlation between Recall on CONVCODEBENCH (ref. GPT-4-0613) and Recall on CONVCODEWORLD with different feedback combinations Ω .

Table 14: Pass@1 results over different model combinations of expert-level verbal feedback f_v^* generation and code generation on ConvCodeWorld where $\Omega = \langle f_c, \phi, f_v^* \rangle$ and the total number of turns n=1. For each column, bold and underscore indicate 1st and 2nd place performance while keeping the code generation model fixed.

f_v^* Generation	Code Generation						
	GPT-4o-2024-05-13	Llama-3.1-70B-Instruct					
w/o Feedback	50.8	45.4					
GPT-4o-2024-05-13	<u>64.2</u>	65.1					
Llama-3.1-70B-Instruct	65.8	<u>62.1</u>					