Almost Optimal Batch-Regret Tradeoff for linear contextual bandits

Zihan Zhang¹, Xiangyang Ji², Yuan Zhou³

- 1. Department of CSE, UW
- 2. Department of Authomation, Tsinghua
- 3. YMSC, Tsinghua

Motivation

- Issues in online learning
 - Policy deployment cost
 - Communication cost

Batch learning framework

- Hyperparameter: batch complexity M, number of rounds T
 - Decide T_1, T_2, \ldots, T_M such that $T_1 + T_2 + \ldots + T_M = T$
 - For i = 1, 2, ..., M
 - Decide π_i as the policy for the i-th batch
 - Run π_i for T_i rounds

Contextual linear bandit

- Hyperparameter: the reward kernel θ
- At each round t = 1,2,...,T
 - Receive the context $\{\mathbf{x}_{t,1},\ldots,\mathbf{x}_{t,K}\}$ drawn from an unknown distribution D
 - Select $i_t \in [K]$ and receive the reward r_t such that $\mathbb{E}[r_t] = \mathbf{x}_{t,i_t}^{\top} \theta$

Regret
$$R_T = \sum_{t=1}^{T} (\max_{i \in K} \mathbf{x}_{t,i}^{\mathsf{T}} \theta - \mathbf{x}_{t,i_t}^{\mathsf{T}} \theta)$$

Main result

Theorem.

For any contextual linear bandit problem with batch complexity as M, the minimax regret bound is (up to log factors)

$$\tilde{\Theta}\bigg(\min\big\{T^{\frac{1}{2-2-M+2}}d^{\frac{1-2^{-M+2}}{2-2-M+2}},T^{\frac{1}{2-2-M+1}}d^{\frac{1-2^{-M+1}}{2-2-M+1}}\min\{K,d\}^{\frac{2^{-M+1}}{2-2-M+1}}\big\}\bigg)$$

where d is the dimension of feature, K is the number of arms and T is the number of rounds.

Main result

Corollay.

It suffices to use $O(\log\log(T))$ batches to reach the minimax optimal regret bound of $\tilde{O}(\sqrt{Td})$

Algorithm ingredients

- Elimination-based bandit learning
- Single-phase learning for exploration policy
 - Explore via reward-free LinUCB
 - ullet Use empirical context to learn the optimal design of D
 - Scaled and clippled update rule
 - Adjust the weight of each feature vector to avoid over exploraiton

Technical ideas

- Hardness
 - Lack of knowledge of infrequent directions
 - A large burn-in time to identify the unknown distribution
- Solution
 - A two phase learning framework
 - Reward-free LinUCB with scaled and clippled update rule

Future direction

- Extend the results to linear MDP and linear mixture MDP
- Devise efficient design algorithm with single-phase learning

Thanks