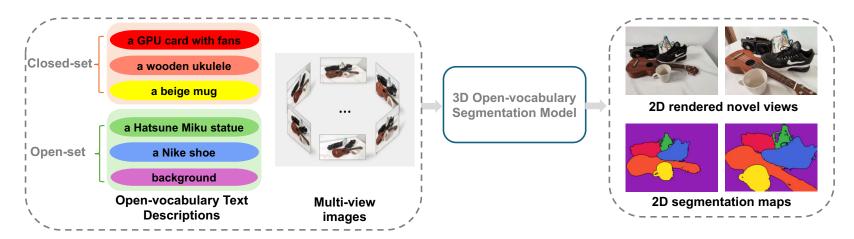


econSG: Efficient and Multi-view Consistent Open-Vocabulary 3D Semantic Gaussians

Can Zhang Gim Hee Lee

3D Open-vocabulary Segmentation

 Produce accurate object boundaries for open-world classes in the 3D scene without requiring any segmentation annotations during training.



Input:

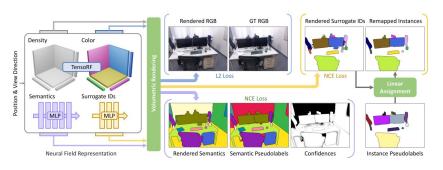
- Multi-view images
- Open-vocabulary text descriptions

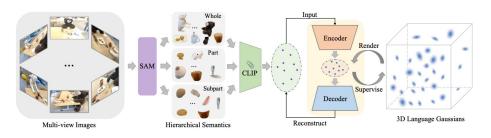
Output:

- Rendered images from novel views.
- Segmentation maps

Note: Train on closed-set classes and inference on both open-set and closed-set classes

Previous 3D Segmentation Approaches



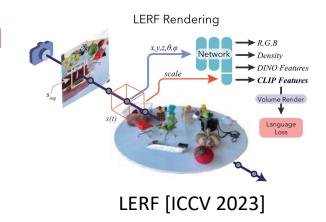


Panoptic Lifting [CVPR 2023]

LangSplat [CVPR 2024]

• Main issues:

- Suffering from poor quality on in-the-wild scenes (e.g. Panoptic Lifting)
- Dilemma of balancing open-vocabulary ability and localizing accuracy (e.g. LERF)
- Time-consuming and inconsistent across views (e.g. LangSplat)



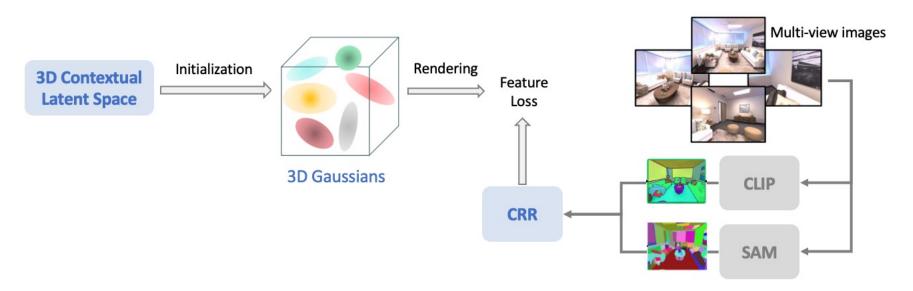
Our Approach: econSG

 We propose a 2D-3D mapping strategy with the zero-shot open-vocabulary prompted paradigm for building a 3D semantic field in 3D Gaussian Splatting.

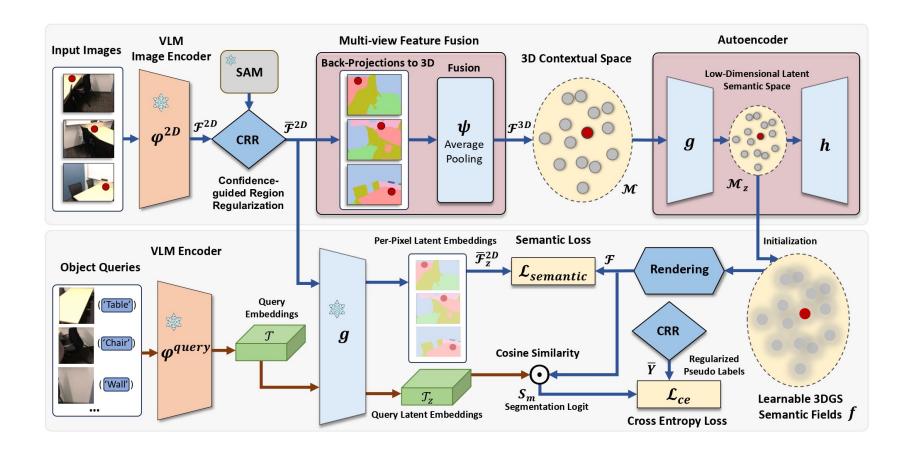
- Our approach is able to simultaneously achieve:
 - accuracy
 - efficiency
 - the grounding of open-vocabulary level semantics
 - natural modality interactions

Our Approach: econSG

- Our model consists of three key components:
 - 3D Gaussian Splatting (3DGS) as explicit 3D representation for building open-vocabulary semantic fields
 - Confidence-guided region regularization (CRR) for semantic mask refinement
 - 3D contextual latent space for initialization



econSG: Our Network Architecture



3D Gaussian Splatting (3DGS)

Learnable parameters of each 3D Gaussian:

• μ : 3D position

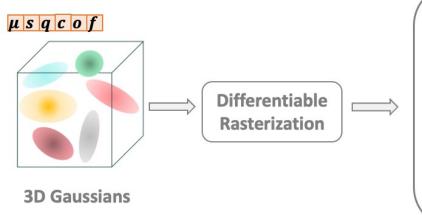
• c: RGB color

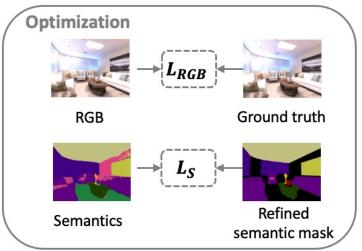
• s : Scaling factor

• o : Opacity value

• q : Rotation quaternion

• *f* : Semantic embedding (Additional)





Rendering equation:

$$I = R(\mu, \Sigma, c, o; p_{cam})$$

Where the result image I is rendered from a specific camera pose \mathcal{P}_{cam} , using the differentiable rasterization R.

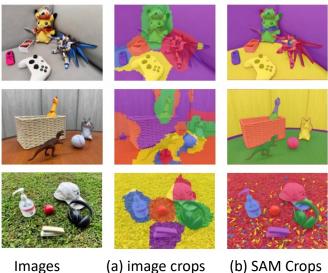
Confidence-guided Region Regularization (CRR)

Problems:

- Extracting pixel-aligned CLIP features (trained for image level) from image crops shows ambiguity around object boundary
- 2. SAM provides good object boundaries but show ambiguity due to a lack of contextual information and scale

Solution:

We propose to generate semantics with less ambiguities in object boundaries, contextual information and scale



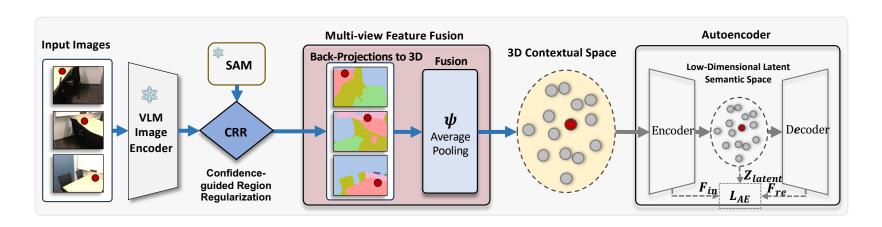
Confidence-guided Region Regularization (CRR)

- Given pixel-level CLIP features and SAM masks,
 - a) Select high-confidence semantic regions across all views with a higher confidence threshold τ_1 .
 - b) Assign semantic labels to SAM masks by the majority voting of labels in high-confidence regions within each mask.
 - c) Generate semantics by:
 - Overlapped regions: retain the semantic labels from the highconfidence maps
 - 2) Outside: assign with SAM labels
 - d) Regularize the boundary of semantics by filtering with a lower confidence threshold τ_2 .

3D Contextual Latent Space

Multi-view Feature Fusion:

- 1. Given multi-view images, extract pixel-level semantics with VLM and generate object masks with SAM.
- 2. Refine 2D semantics with CRR module.
- Back-project 2D semantics to 3D space and fuse multiview features to construct 3D contextual space



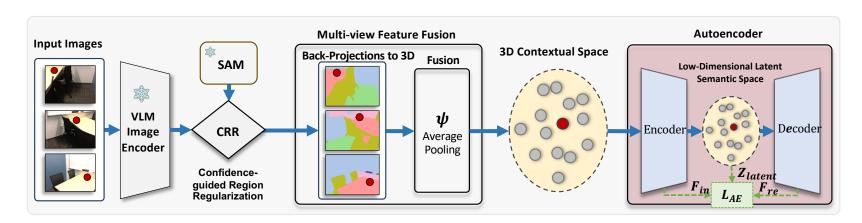
3D Contextual Latent Space

Autoencoder:

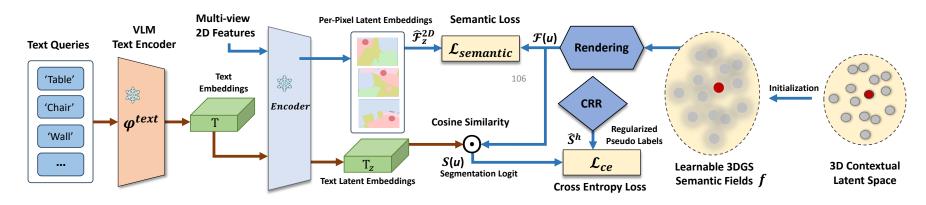
1. Train an autoencoder with the 3D contextual space.

Reconstruction loss:
$$L_{AE} = L_{l2}(F_{in}, F_{re}) + L_{ce}(F_{re}, \hat{y}) + L_{ce}(z_{latent}, \hat{y})$$

2. Map high-dimensional 3D contextual space into low-dimensional latent semantic space with the encoder.



3D Gaussian Splatting for Semantic Fields



- Initialize the semantic embedding f in each 3D Gaussian with the low-dimensional 3D contextual latent space.
- We optimize the 3DGS semantic fields with:

$$\mathcal{L}_{semantic} = \sum_{u=1}^{U} Dist(\mathcal{F}(u), \hat{\mathcal{F}}_{z}^{2D}(u)), \ \mathcal{L}_{ce} = CE(S(u), \hat{S}^{h})$$

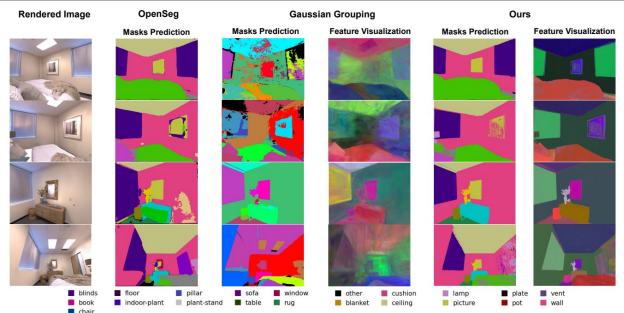
- Dist(·,·) denotes the distance function.
- $S(u) = cos < \mathcal{F}(u)$, $\mathcal{T}_z >$ denotes the segmentation logit at pixel u.

Final Losses: $\mathcal{L} = \mathcal{L}_{color} + \lambda_{\text{sem}} \mathcal{L}_{semantic} + \lambda_{2d} \mathcal{L}_{ce}(u)$ School of Computing RGB fields

Segmentation Results of Novel Views from Scannet and Replica

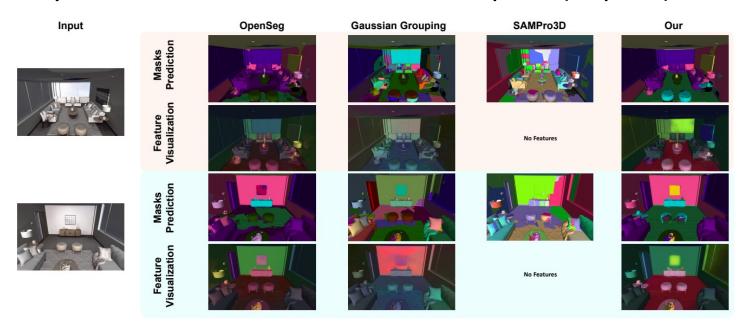
Open-vocabulary Segmentation Comparison

	FPS	Replica				Scannet				
Dataset		sparse-view		multi-view		sparse-view		multi-view		
		mIoU	mAcc	mIoU	mAcc	mIoU	mAcc	mIoU	mAcc	
LERF	0.2	4.312	17.080	8.285	22.125	14.059	38.734	15.349	40.294	
3DOVS	0.3	4.553	19.356	9.081	23.938	14.227	40.584	17.802	42.532	
Feature3DGS	2.5	9.584	38.245	10.634	36.520	17.552	48.686	18.069	54.101	
econSG (Ours)	156	25.513	70.716	33.869	78.564	39.018	74.805	48.205	86.178	



Analysis

Analysis on the 3D Contextual Latent Space (Replica)

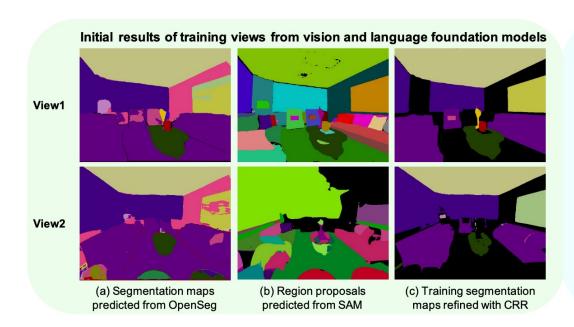


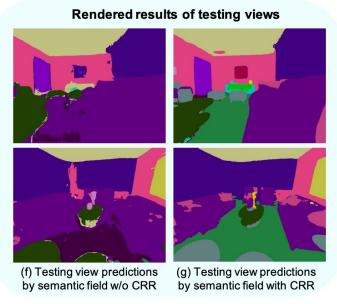
Training efficiency analysis on the 3DOVS dataset

Methods	LERF	3DOVS	Langsplat	Feature3DGS	Ours			Ours (remove autoencoder)	
Feature dimension	512	512	3	128	6	16	32	512	
mIoU (%)	27.0	74.0	82.3	6.7	91.6	91.8	91.8	OOM	
Training time (min)	19.4	78	66	87	29	32	43	OOM	
Inference (s)	121.4	6.6	401.9	6.0	4.9	5.2	5.3	OOM	

Ablation

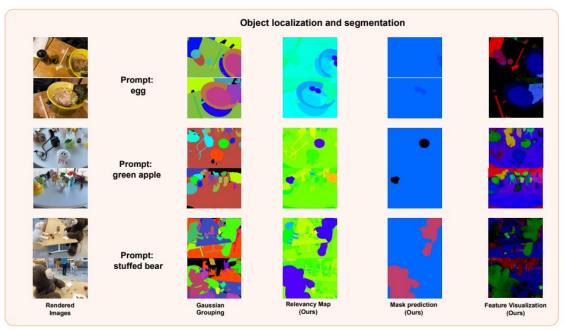
• Ablation on Confidence-guided Region Regularization





Applications

Language-guided segmentation and editing



Thanks for Listening!

