## Random-Set Neural Networks

Shireen Kudukkil Manchingal<sup>1\*</sup>, Muhammad Mubashar<sup>1</sup>, Kaizheng Wang<sup>2,4</sup>, Keivan Shariatmadar<sup>3,4</sup>, Fabio Cuzzolin<sup>1</sup>

<sup>1</sup>School of Engineering, Computing and Mathematics, Oxford Brookes University, UK

<sup>2</sup>M-Group and DistriNet Division, Department of Computer Science, KU Leuven, Belgium

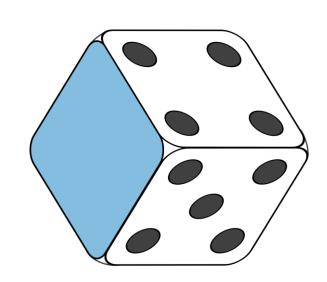
<sup>3</sup>LMSD Division, Mechanical Engineering, KU Leuven,

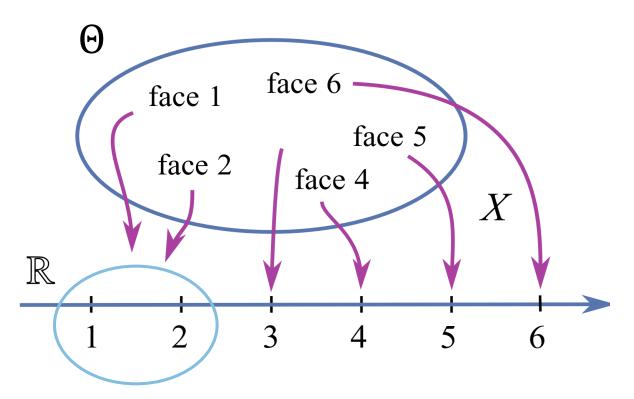
<sup>4</sup>Flanders Make@KU Leuven









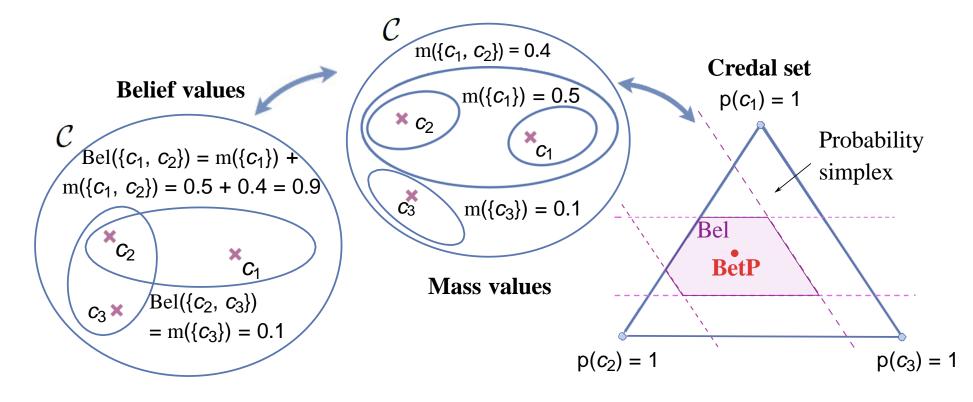






### **Random Sets**

- Die:  $\Theta = \{\text{face1, face2, ..., face6}\} \rightarrow \{1, 2, ..., 6\}.$
- Cloaked Faces: Faces 1 & 2 → mapped to set{1, 2}.
- Random Set: Set-valued random variable.





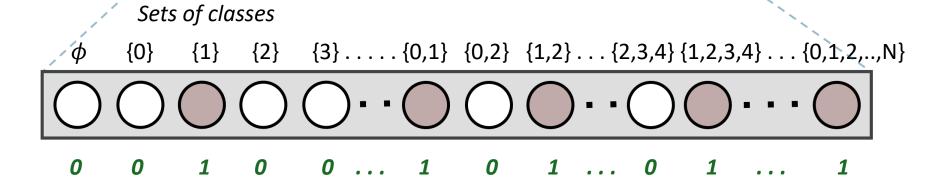



#### **Belief Functions**

#### **Definition:**

- Assigns normalized, non-negative mass values to subsets  $A \subseteq \Theta$ .
- $m(A) \ge 0$ ;  $\sum m(A) = 1$  for all  $A \in P(\Theta)$






## Belief function encoding of ground-truth

Original one-hot encoded ground truth

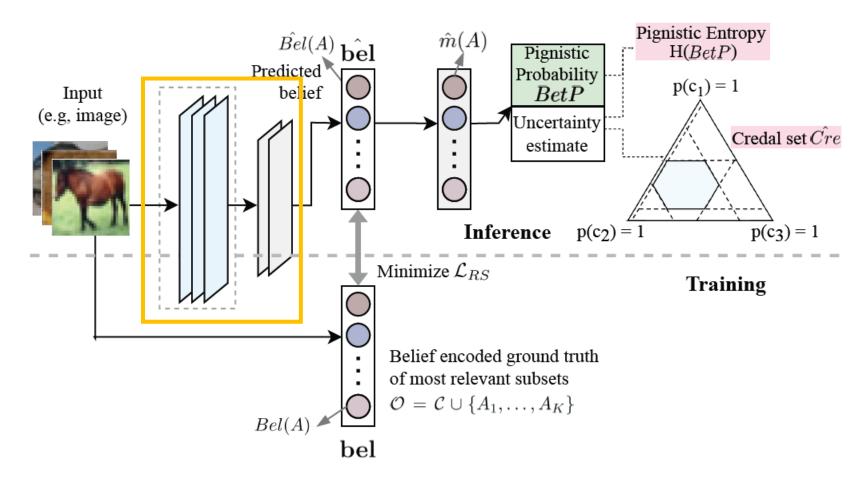
0 1 0 .... 0
0 1 2 .... N
Classes

Belief function encoded ground truth





#### **RS-NN Architecture**


• Step 1: Selection of an optimal budget of such sets from the training set





#### **RS-NN Architecture**

• Step 2: New <u>output layers and loss</u> that predict <u>random sets</u> for <u>relevant sets of classes</u>





#### **RS-NN Performance**

- Compared RS-NN with all the most recent baselines
- <u>Better accuracy</u>, same <u>inference time</u> as standard NN with no uncertainty estimation

| Datasets                           | MNIST            | CIFAR-10         | Intel Image      | CIFAR-100        | ImageNet (Top-1) | ImageNet (Top-5) | Inference time (ms) |
|------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|---------------------|
| RS-NN (ours)                       | $99.71 \pm 0.03$ | $93.53 \pm 0.09$ | $94.22 \pm 0.03$ | $71.61 \pm 0.07$ | 79.92            | 94.47            | $1.91 \pm 0.02$     |
| LB-BNN (Hobbhann et al., 2022)     | $99.58 \pm 0.04$ | $89.95 \pm 0.81$ | $90.49 \pm 0.42$ | $59.89 \pm 1.96$ | 72.48            | 90.85            | $7.11 \pm 0.89$     |
| FSVI (Rudner et al., 2022)         | $99.18 \pm 0.03$ | $80.29 \pm 0.05$ | $88.92 \pm 0.13$ | $53.34 \pm 0.09$ | 62.56            | 84.69            | $340.25 \pm 0.76$   |
| DE (Lakshminarayanan et al., 2017) | $99.25 \pm 0.01$ | $92.73 \pm 0.04$ | $91.98 \pm 0.11$ | $70.53 \pm 0.07$ | 78.77            | 94.37            | $13163.50 \pm 3.37$ |
| ENN (Osband et al., 2024)          | $99.07 \pm 0.11$ | $91.55 \pm 0.60$ | $91.49 \pm 0.19$ | $68.02 \pm 0.26$ | 71.82            | 89.48            | $3.10 \pm 0.03$     |
| CNN                                | $99.12 \pm 0.04$ | $92.08 \pm 0.42$ | $90.89 \pm 0.10$ | $65.50 \pm 0.08$ | 78.56            | 94.34            | $1.91 \pm 0.03$     |



#### **RS-NN Performance**

- But also: better ability to identify out-of-distribution (OoD) data (i.e., unusual or rare data)
- Better <u>in-distribution vs out-of-distribution uncertainty</u> estimation

| In-distribution (iD) |        |               |                     |                                |         | Out-of-distribution (OoD) |           |                   |             |                   |                   |  |
|----------------------|--------|---------------|---------------------|--------------------------------|---------|---------------------------|-----------|-------------------|-------------|-------------------|-------------------|--|
| Dataset              |        | Test accuracy | Uncertainty measure | In-distribution<br>Entropy (↓) | ECE (↓) | SVHN                      |           |                   | Intel Image |                   |                   |  |
|                      |        | (%) (†)       |                     |                                |         | AUROC (†)                 | AUPRC (†) | Entropy (†)       | AUROC (†)   | AUPRC (†)         | Entropy (†)       |  |
|                      | RS-NN  | 93.53         | Pignistic entropy   | $0.088 \pm 0.308$              | 0.0484  | 94.91                     | 93.72     | $1.132\pm0.855$   | 97.39       | 90.27             | $1.517\pm0.740$   |  |
| CIFAR-10             | LB-BNN | 89.95         | Predictive Entropy  | $0.191 \pm 0.412$              | 0.0585  | 88.14                     | 81.96     | $0.828 \pm 0.243$ | 82.21       | 55.17             | $0.763 \pm 0.722$ |  |
|                      | FSVI   | 80.29         | Predictive Entropy  | $0.118 \pm 0.563$              | 0.0521  | 80.59                     | 80.84     | $0.413 \pm 0.461$ | 74.27       | 72.51             | $0.289 \pm 0.670$ |  |
|                      | DE     | 92.73         | Mean Entropy        | $0.154 \pm 0.367$              | 0.0482  | 93.84                     | 91.88     | $0.939 \pm 0.554$ | 94.25       | 79.36             | $1.166 \pm 0.552$ |  |
|                      | ENN    | 91.55         | Mean Entropy        | $0.126 \pm 0.323$              | 0.0556  | 92.76                     | 89.05     | $0.887 \pm 0.514$ | 85.67       | 58.09             | $0.600 \pm 0.578$ |  |
|                      | CNN    | 92.08         | Softmax Entropy     | $0.114 \pm 0.304$              | 0.0669  | 93.11                     | 91.0      | $0.930 \pm 0.610$ | 87.75       | 65.54             | $0.719 \pm 0.673$ |  |
|                      |        |               |                     |                                |         | F-MNIST                   |           |                   | K-MNIST     |                   |                   |  |
| MNIST                | RS-NN  | 99.71         | Pignistic entropy   | $0.010 \pm 0.111$              | 0.0029  | 93.89                     | 93.98     | $0.530 \pm 0.770$ | 96.75       | 96.58             | $0.740 \pm 0.917$ |  |
|                      | LB-BNN | 99.58         | Predictive Entropy  | $0.001 \pm 0.085$              | 0.0032  | 89.65                     | 90.36     | $0.287 \pm 0.442$ | 95.61       | 95.65             | $0.540 \pm 0.621$ |  |
|                      | FSVI   | 99.18         | Predictive Entropy  | $0.006 \pm 0.265$              | 0.0047  | 92.79                     | 91.17     | $0.264 \pm 0.289$ | 91.65       | 95.75             | $0.313 \pm 0.381$ |  |
|                      | DE     | 99.25         | Mean Entropy        | $0.031 \pm 0.155$              | 0.0031  | 92.30                     | 92.05     | $0.584 \pm 0.587$ | 95.81       | 94.71             | $0.564 \pm 0.715$ |  |
|                      | ENN    | 99.07         | Mean Entropy        | $0.022 \pm 0.127$              | 0.0039  | 81.79                     | 82.92     | $0.313 \pm 0.464$ | 95.94       | 95.45             | $0.503 \pm 0.672$ |  |
|                      | CNN    | 98.90         | Softmax Entropy     | $0.023 \pm 0.135$              | 0.0052  | 83.77                     | 84.14     | $0.278 \pm 0.426$ | 94.46       | 93.94             | $0.616 \pm 0.688$ |  |
|                      |        |               |                     |                                |         | ImageNet-O                |           |                   |             |                   |                   |  |
|                      |        |               |                     |                                |         | AUROC AUF                 |           |                   | RC Entropy  |                   |                   |  |
| ImageNet             | RS-NN  | 79.92         | Pignistic entropy   | $2.972 \pm 2.108$              | 0.1416  | 60.38                     |           | 55.16             |             | $3.659 \pm 3.771$ |                   |  |
|                      | LB-BNN | 72.48         | Predictive Entropy  | $2.471 \pm 2.972$              | 0.5812  | 41.08                     |           | 30.99             |             | $1.383 \pm 0.028$ |                   |  |
|                      | FSVI   | 62.56         | Predictive Entropy  | $1.328\pm1.966$                | 0.3890  | 50.55                     |           | 49.88             |             | $1.637 \pm 1.328$ |                   |  |
|                      | DE     | 78.77         | Mean Entropy        | $1.532 \pm 1.325$              | 0.1940  | 55.37                     |           | 53.20             |             | $1.775 \pm 1.343$ |                   |  |
|                      | ENN    | 71.82         | Mean Entropy        | $1.395 \pm 1.510$              | 0.5961  | 54.67                     |           | 43.73             |             | $1.617 \pm 1.597$ |                   |  |
|                      | CNN    | 78.56         | Softmax Entropy     | $6.386 \pm 1.388$              | 0.4004  | 54.28                     |           | 48.73             |             | $6.575\pm1.512$   |                   |  |



#### **RS-NN Performance**

- Increased <u>robustness to adversarial attacks</u>
- <u>Statistical guarantees</u>, using conformal learning, <u>on how often the prediction is correct!</u>

Read the full paper here:





## Acknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 964505 (E-pi).



# Thank you!