

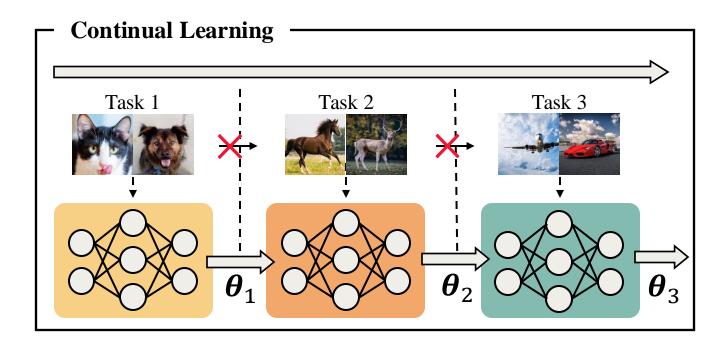
Active Learning for Continual Learning: Keeping the Past Alive in the Present

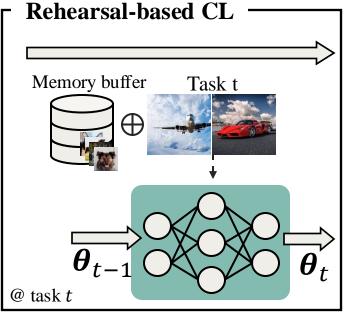
Jaehyun Park Dongmin Park Jae-Gil Lee

KRAFTON

Continual Learning

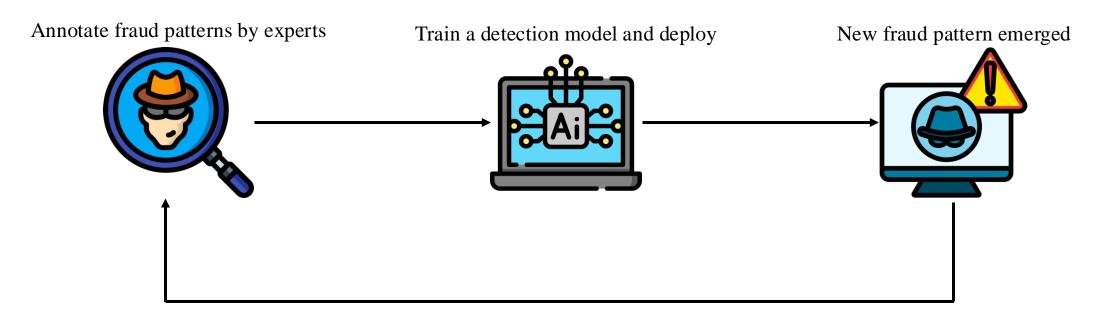
• Realistic deep learning scenario to adapt models continuously on evolving data distribution to maintain knowledge of the past without access to previous data





Problem of Continual Learning

- Assuming that the evolving data distributions are **fully** labeled is inaccurate
 - Continuously requesting annotation from experts to recognize new fraud patterns is necessary for fraud detection systems^[1]
- Devising a method to mitigate the **limited labeling budget** in CL scenarios is necessary



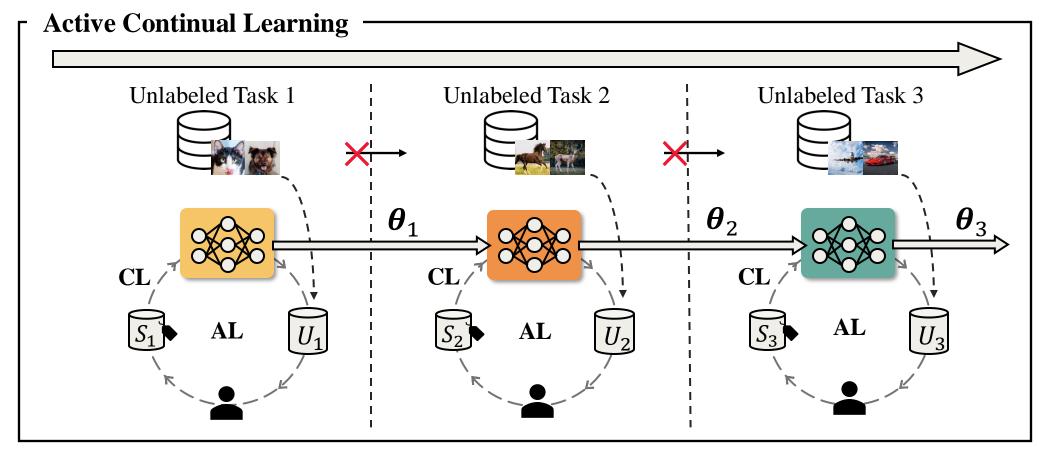
Active Learning (AL)

• Select samples under a **labeling budget** to maximize performance by defining an informativeness measurement to assess each sample's importance



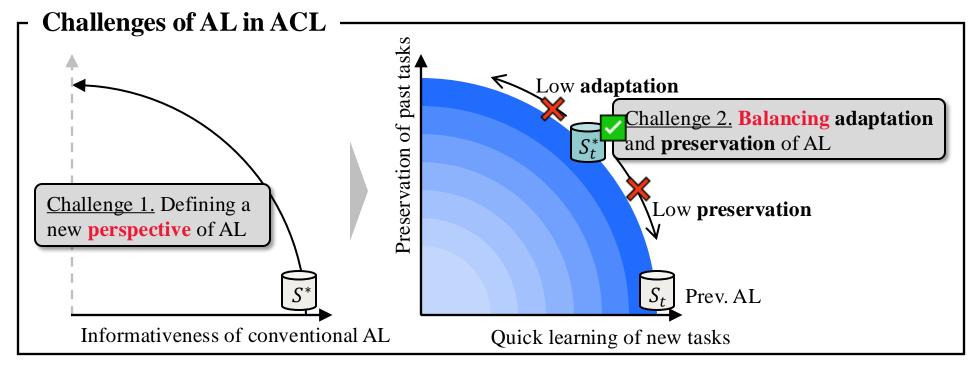
Active Continual Learning (ACL)

• A key problem for effectively mitigating the labeling budget, by querying the most important examples at **each CL task** that maximize the model's performance



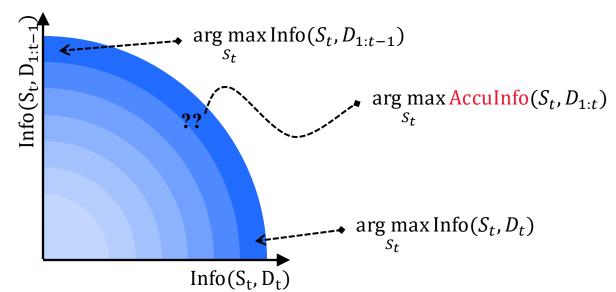
Challenges

- Conventional AL algorithms are prone to catastrophic forgetting!
 - AL does not assume distribution shifts
 - Focuses on quickly learning new information, leading to loss of past information
- Find unlabeled samples in the **new** task that preserves the knowledge of the **past**



Idea. Accumulated Informativeness

- Info(S_t; D) = $\mathbb{E}_{(x,y)\sim\mathcal{A}(D)}[p(y|\mathbf{x}; \widehat{\boldsymbol{\theta}}_t)] s.t. \widehat{\boldsymbol{\theta}}_t = \arg\min_{\boldsymbol{\theta}} \mathcal{L}_{\mathrm{CL}}(\boldsymbol{\theta}; \boldsymbol{\theta}_{t-1}, \mathcal{A}(S_t))$
 - Expected likelihood of the model trained by S_t over D
 - Info (S_t, D_t) : Informativeness of S_t w.r.t. the **new** task
 - Info $(S_t, D_{1:t-1})$: Informativeness of S_t w.r.t. the **past** tasks
- Accumulated Informativeness: An arbitrary combination of the two Info(\cdot)
 - Acculnfo(S_t , $D_{1:t}$) = $f(Info(S_t; D_t), Info(S_t; D_{1:t-1}))$



Accumulated Info. and Fisher-based ACL

• Fisher-based ACL offers a practical form of the arbitrary combination for accumulated informativeness, achieving an optimal balance between adaptation and preservation

$$S_{t}^{*} = \underset{S_{t} \subset U_{t}, |S_{t}| \leq b_{t}}{\operatorname{arg \, min}} \operatorname{tr} \left[\mathbf{I}(\boldsymbol{\theta}_{t}^{*}; S_{t})^{-1} \mathbf{I}(\boldsymbol{\theta}_{t}^{*}; U_{1:t}) \right]$$

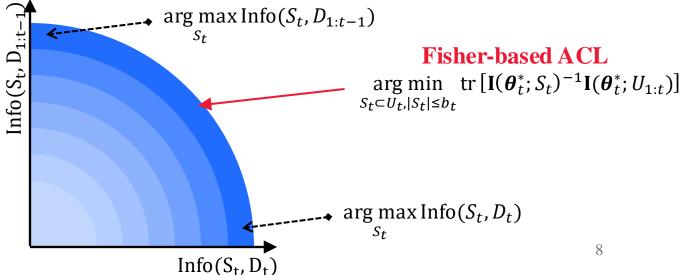
$$\approx \underset{S_{t} \subset U_{t}, |S_{t}| \leq b_{t}}{\operatorname{arg \, min}} \lambda \cdot \underbrace{\operatorname{tr} \left[\mathbf{I}(\boldsymbol{\theta}_{t}^{*}; S_{t})^{-1} \mathbf{I}(\boldsymbol{\theta}_{t}^{*}; M_{t}) \right]}_{Past \, info.} + (1 - \lambda) \cdot \underbrace{\operatorname{tr} \left[\mathbf{I}(\boldsymbol{\theta}_{t}^{*}; S_{t})^{-1} \mathbf{I}(\boldsymbol{\theta}_{t}^{*}; U_{t}) \right]}_{New \, info.}, \lambda = \frac{|U_{1:t-1}|}{|U_{1:t}|}$$

$$= \underset{S_{t} \subset U_{t}, |S_{t}| \leq b_{t}}{\operatorname{arg \, min}} \operatorname{tr} \left[\mathbf{I}(\boldsymbol{\theta}_{t}^{*}; S_{t})^{-1} \mathbf{I}(\boldsymbol{\theta}_{t}^{*}; U_{t}, M_{t}) \right]$$

$$= \underset{S_{t} \subset U_{t}, |S_{t}| \leq b_{t}}{\operatorname{arg \, min}} \operatorname{tr} \left[\mathbf{I}(\boldsymbol{\theta}_{t}^{*}; S_{t})^{-1} \mathbf{I}(\boldsymbol{\theta}_{t}^{*}; U_{t}, M_{t}) \right]$$

$$= \underset{S_{t} \subset U_{t}, |S_{t}| \leq b_{t}}{\operatorname{arg \, min}} \operatorname{tr} \left[\mathbf{I}(\boldsymbol{\theta}_{t}^{*}; S_{t})^{-1} \mathbf{I}(\boldsymbol{\theta}_{t}^{*}; U_{t}, M_{t}) \right]$$

$$= \underset{S_{t} \subset U_{t}, |S_{t}| \leq b_{t}}{\operatorname{arg \, min}} \operatorname{tr} \left[\mathbf{I}(\boldsymbol{\theta}_{t}^{*}; S_{t})^{-1} \mathbf{I}(\boldsymbol{\theta}_{t}^{*}; U_{t}, M_{t}) \right]$$



Fisher Information Embedding (FIE)

- Fisher-based ACL is infeasible for large-scale data due to its heavy computation
- Propose the Fisher information embedding, the diagonal component of the FIM
 - $\mathbf{f}(\boldsymbol{\theta}_t; \mathbf{x}) = \sum_{y \in C} p(y|\mathbf{x}; \boldsymbol{\theta}_t) [\nabla_{\boldsymbol{\theta}_t} \log p(y|\mathbf{x}; \boldsymbol{\theta}_t)^2] \in \mathbb{R}^{|\boldsymbol{\theta}_t|}$

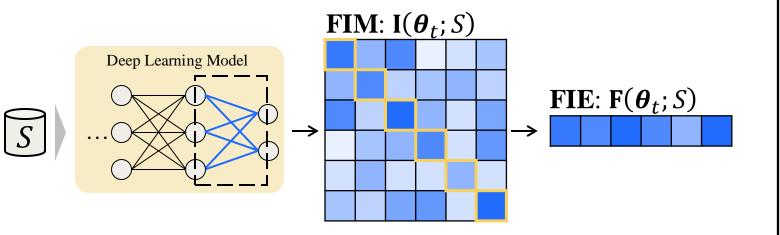
Fisher Information Embedding

Sample (Thrm. 4.3.2.)

$$\mathbf{f}(\boldsymbol{\theta}_t; \mathbf{x})_{(k,i)} = p_k (1 - p_k) \mathbf{h}(\boldsymbol{\theta}_t; \mathbf{x})_i^2$$
k: class, i: embedding

Subset

$$\mathbf{F}(\boldsymbol{\theta}_t; S) = \frac{1}{|S|} \sum_{\mathbf{x} \in S} \mathbf{f}(\boldsymbol{\theta}_t; \mathbf{x})$$



Fisher-Optimality-Preserving Properties

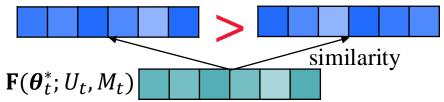
Approximation of Fisher-based ACL

$$S_t^* = \underset{S_t \subset U_t, |S_t| \le b_t}{\operatorname{arg \, min}} \operatorname{tr} \left[\mathbf{I}(\boldsymbol{\theta}_t; S_t)^{-1} \mathbf{I}(\boldsymbol{\theta}_t; U_t, M_t) \right]$$

$$\xrightarrow{\text{diagonalize}} \underset{S_t \subset U_t, |S_t| \le b_t}{\operatorname{arg \, min}} \mathbf{F}(\boldsymbol{\theta}_t^*; U_t, M_t) \oslash \mathbf{F}(\boldsymbol{\theta}_t^*; S_t)$$

- Diagonalizing FIM allows two properties of $\mathbf{F}(\boldsymbol{\theta}_t^*; S_t^*)$ to be found:
 - **Property 1.** Position-Wise Optimality:
 - Overall high magnitude of information is advantageous

- **Property 2.** Distribution-Wise Optimality (Thrm. 4.3.):
 - Aligning the information distribution with the **target** FIE is beneficial when magnitude is the same



Putting Them All Together: AccuACL

- Defining sample-wise scoring metric based on the two properties
 - **Property 1.** Position-Wise Optimality:
 - Magnitude score $\mathcal{M}(\boldsymbol{\theta}_t, \mathbf{x}) = \|\mathbf{f}(\boldsymbol{\theta}_t; \mathbf{x})\|_2$
 - **Property 2.** Distribution-Wise Optimality:
 - Distribution score $\mathcal{D}(\boldsymbol{\theta}_t, \mathbf{x}, M_t, U_t) = \exp(-D_{\text{IS}}(\sigma(\boldsymbol{f}(\boldsymbol{\theta}_t; \mathbf{x}))||\sigma(\boldsymbol{F}(\boldsymbol{\theta}_t; M_t, U_t))))$
- Overly-sample the subset that ranks highest with \mathcal{D} , then further narrow it down with \mathcal{M}

Overall Performance (1/2)

• AccuACL consistently outperforms AL baselines for different CL strategies

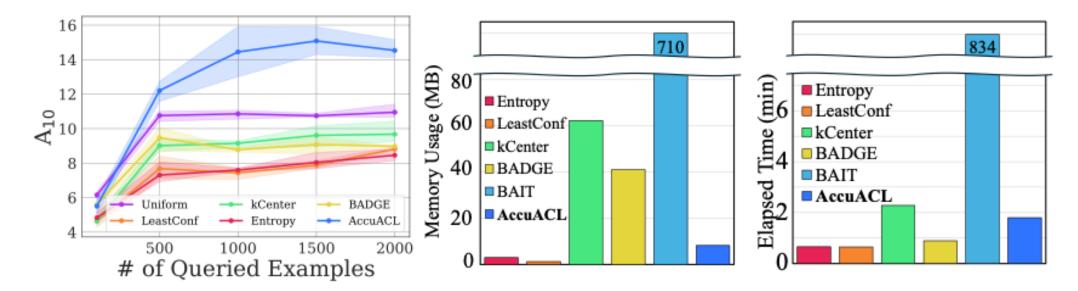
Continual Learning	Active Learning	SplitCIFAR10				SplitCIFAR100				SplitTinyImageNet			
		M=100		M=200		M=500		M=1000		M=2000		M=5000	
		$A_5(\uparrow)$	$F_5(\downarrow)$	$A_5(\uparrow)$	$F_5(\downarrow)$	$A_{10}(\uparrow)$	$F_{10}(\downarrow)$	$A_{10}(\uparrow)$	$F_{10}(\downarrow)$	$A_{10}(\uparrow)$	$F_{10}(\downarrow)$	$A_{10}(\uparrow)$	$F_{10}(\downarrow)$
ER	Full	$20.1{\scriptstyle\pm0.6}$	$93.3{\scriptstyle\pm1.2}$	$26.3{\pm}3.5$	85.9±4.4	$12.6{\scriptstyle\pm0.1}$	$75.0{\scriptstyle \pm 0.7}$	$17.9{\scriptstyle\pm0.3}$	68.5 ± 0.6	$7.7{\scriptstyle\pm0.1}$	60.4 ± 0.6	$11.5{\scriptstyle\pm0.2}$	$54.1{\scriptstyle\pm0.5}$
	Uniform	<u>20.4</u> ±3.0	77.1 ± 4.8	26.7 ± 3.0	67.2 ±5.2	10.9 ± 0.4	63.7 ± 0.6	16.7 ± 0.4	56.7 ± 0.3	6.8 ± 0.2	45.3±0.3	8.9 ± 0.3	42.5 ± 0.6
	Entropy	$19.7{\scriptstyle\pm1.2}$	$81.7{\scriptstyle\pm0.7}$	$23.6{\scriptstyle\pm1.8}$	$76.5{\scriptstyle\pm2.3}$	$8.5{\scriptstyle\pm0.3}$	$64.7{\scriptstyle\pm0.6}$	$11.0{\pm}0.4$	61.8 ± 0.5	$4.7{\scriptstyle\pm0.1}$	44.1 ± 0.2	$5.5{\scriptstyle\pm0.2}$	$42.8{\scriptstyle\pm0.2}$
	LeastConf	$19.9{\scriptstyle\pm1.4}$	$81.0{\scriptstyle\pm0.6}$	$22.5{\scriptstyle\pm1.7}$	$76.4{\scriptstyle\pm0.8}$	8.8 ± 0.1	$66.3{\scriptstyle\pm0.2}$	$11.3{\scriptstyle\pm0.3}$	63.5 ± 0.1	$4.8{\scriptstyle\pm0.3}$	44.4 ± 0.7	$5.7{\scriptstyle\pm0.1}$	$42.7{\scriptstyle\pm0.7}$
	kCenter	$19.4{\scriptstyle\pm1.2}$	76.2 ± 1.5	$23.4{\scriptstyle\pm2.1}$	$71.8{\scriptstyle\pm1.6}$	$9.7{\scriptstyle\pm0.7}$	$66.1{\scriptstyle\pm0.2}$	$14.7{\scriptstyle\pm0.7}$	60.0 ± 0.2	$6.0{\pm}0.3$	46.1 ± 0.7	$7.4{\scriptstyle\pm0.3}$	$44.6{\scriptstyle\pm0.4}$
	BADGE	$19.4{\scriptstyle\pm1.7}$	$81.0{\scriptstyle\pm1.7}$	$25.1{\scriptstyle\pm1.5}$	$73.5{\scriptstyle\pm1.4}$	9.0 ± 0.0	$66.4{\scriptstyle\pm0.3}$	$12.5{\scriptstyle\pm0.3}$	62.2 ± 0.7	$5.8{\scriptstyle\pm0.2}$	45.5 ± 0.3	$7.2{\scriptstyle\pm0.1}$	$43.0{\scriptstyle\pm0.8}$
	BAIT	18.4	82.3	23.3	76.5	*	*	*	*	*	*	*	*
	AccuACL	20.7 ± 1.0	$77.9{\scriptstyle\pm1.2}$	26.9 ± 0.2	70.3 ± 0.1	14.1 ± 0.7	55.8 ± 0.9	$22.0{\pm}1.1$	44.5 ± 1.5	7.3 ± 0.0	41.9 ± 0.3	10.5 ± 1.0	37.5 ± 1.0
GSS	Full	$22.9{\pm}0.3$	$88.9{\scriptstyle\pm0.6}$	$27.8{\pm}2.6$	82.0±3.4	$10.1{\scriptstyle\pm0.6}$	$67.9{\scriptstyle\pm0.5}$	10.8 ± 0.7	67.3 ± 1.2	$7.2{\scriptstyle\pm0.3}$	54.5±0.4	8.0 ± 0.4	$53.0{\scriptstyle\pm1.2}$
	Uniform	$\underline{19.7}$ ± 1.0	$76.7{\pm}2.8$	23.6 ± 1.9	$71.7_{\pm 2.1}$	$\underline{7.9}$ ± 0.4	$57.6{\scriptstyle\pm1.6}$	$\underline{7.9}$ ± 0.3	57.4 ± 0.3	$\underline{5.3}$ ± 0.1	42.0±0.2	$\underline{5.3}$ ± 0.2	$42.1{\scriptstyle\pm0.2}$
	Entropy	$18.0{\scriptstyle\pm0.6}$	75.4 ± 3.1	$17.1{\scriptstyle\pm1.5}$	$76.4{\scriptstyle\pm3.0}$	$7.0{\scriptstyle\pm0.3}$	$\underline{57.2} \pm 0.6$	$7.3{\scriptstyle\pm0.3}$	$\underline{56.1}{\pm}0.2$	$4.0{\scriptstyle\pm0.2}$	39.1 ±0.8	$4.3{\scriptstyle\pm0.2}$	$40.0{\scriptstyle \pm 0.1}$
	LeastConf	$18.4{\scriptstyle\pm1.4}$	$77.8{\pm}3.3$	$20.6{\scriptstyle\pm1.6}$	$72.0{\scriptstyle\pm5.5}$	$7.1{\scriptstyle\pm0.1}$	$58.2{\scriptstyle\pm0.7}$	$7.2{\scriptstyle\pm0.2}$	57.1 ± 0.3	$3.9{\scriptstyle\pm0.2}$	40.0±1.3	$4.3{\scriptstyle\pm0.3}$	$\underline{39.8} \pm 1.7$
	kCenter	$19.1{\scriptstyle\pm0.6}$	$77.8{\scriptstyle\pm1.7}$	$19.6{\scriptstyle\pm0.8}$	$75.1{\scriptstyle\pm3.3}$	$7.1{\scriptstyle\pm0.5}$	$59.3{\scriptstyle\pm1.2}$	$7.5{\scriptstyle\pm0.6}$	56.2 ± 4.6	$5.1{\scriptstyle\pm0.2}$	41.2±1.2	$5.1{\scriptstyle\pm0.3}$	$42.1{\scriptstyle\pm0.4}$
	BADGE	$18.6{\scriptstyle\pm0.9}$	$78.6{\scriptstyle\pm1.9}$	$20.6{\scriptstyle\pm1.7}$	$74.1{\scriptstyle\pm5.8}$	$7.7{\scriptstyle\pm0.5}$	$57.7{\pm}0.6$	$7.4{\scriptstyle\pm0.7}$	$57.5{\pm}2.0$	$4.5{\scriptstyle\pm0.3}$	40.4 ± 0.7	$4.5{\scriptstyle\pm0.2}$	$41.3{\scriptstyle\pm0.7}$
	BAIT	17.5	81.8	16.6	76.8	*	*	*	*	*	*	*	*
	AccuACL	26.5 ± 0.7	68.2 ±2.2	30.0 ±0.6	61.3 ±1.8	8.4 ± 0.4	53.7 ± 1.7	8.4±0.4	54.3 ± 1.0	5.7 ± 0.4	39.8 ± 1.0	5.8 ± 0.2	38.4 ± 1.7

Overall Performance (2/2)

• AccuACL consistently outperforms AL baselines for different CL strategies

Continual Learning	Active Learning	SplitCIFAR10				SplitCIFAR100				SplitTinyImageNet			
		M=100		M=200		M=500		M=1000		M=2000		M=5000	
		$A_5(\uparrow)$	$F_5(\downarrow)$	$A_5(\uparrow)$	$F_5(\downarrow)$	$A_{10}(\uparrow)$	$F_{10}(\downarrow)$	$A_{10}(\uparrow)$	$F_{10}(\downarrow)$	$A_{10}(\uparrow)$	$F_{10}(\downarrow)$	$A_{10}(\uparrow)$	$F_{10}(\downarrow)$
DER++	Full	$40.0{\scriptstyle\pm1.1}$	$68.6{\scriptstyle\pm1.3}$	$48.7{\scriptstyle\pm1.1}$	$57.5{\pm}1.1$	$30.6{\scriptstyle\pm1.2}$	$51.1{\scriptstyle\pm0.9}$	$40.1{\scriptstyle\pm1.4}$	38.0 ± 1.0	$10.3{\scriptstyle\pm0.3}$	$55.3{\pm}1.1$	$19.6{\scriptstyle\pm0.1}$	$32.2{\scriptstyle\pm0.2}$
	Uniform	39.2 ± 0.4	49.0 ± 1.5	49.6 ± 1.2	31.9 ± 2.1	27.6 ± 0.9	38.9 ± 1.4	35.9 ± 0.7	21.5 ± 0.5	11.3 ± 0.2	29.0±0.4	15.2 ± 0.1	10.7 ± 0.3
	Entropy	$32.3{\scriptstyle\pm0.6}$	$62.9{\scriptstyle\pm0.2}$	$47.5{\scriptstyle\pm4.2}$	$38.6{\pm}4.7$	$21.3{\scriptstyle\pm0.7}$	$48.6{\scriptstyle\pm1.0}$	$31.7{\scriptstyle\pm0.2}$	27.5 ± 0.8	$8.1{\scriptstyle\pm0.1}$	$29.7{\scriptstyle\pm1.1}$	$13.1{\scriptstyle\pm0.3}$	$\underline{9.7}$ ± 0.4
	LeastConf	$33.8{\scriptstyle\pm4.2}$	$62.1{\scriptstyle\pm5.6}$	$45.2{\scriptstyle\pm2.6}$	$42.1{\scriptstyle\pm3.3}$	$22.1{\scriptstyle\pm0.6}$	$48.0{\scriptstyle\pm1.5}$	$33.1{\scriptstyle\pm1.0}$	27.0 ± 0.6	$8.5{\scriptstyle\pm0.3}$	28.9 ± 0.7	$13.3{\scriptstyle\pm0.6}$	9.5 ± 0.5
	kCenter	$37.0{\scriptstyle\pm1.1}$	$55.1{\pm}2.3$	$47.0{\scriptstyle\pm1.6}$	39.6 ± 3.5	$25.9{\scriptstyle\pm0.0}$	$43.4{\scriptstyle\pm0.3}$	$35.0{\pm}0.7$	24.9 ± 0.5	$10.7{\scriptstyle\pm0.1}$	27.9 ± 0.8	$14.4{\scriptstyle\pm0.4}$	$11.2{\scriptstyle\pm0.5}$
	BADGE	$36.4{\pm}2.3$	$57.9{\pm}0.6$	$51.0 {\pm} 2.8$	$35.8{\scriptstyle\pm3.1}$	$24.8{\scriptstyle\pm0.4}$	$45.6{\scriptstyle\pm1.0}$	$34.1{\scriptstyle\pm1.0}$	27.7 ± 0.7	$9.7{\scriptstyle\pm0.1}$	$28.5{\scriptstyle\pm0.8}$	$14.7{\scriptstyle\pm0.2}$	$10.8{\scriptstyle\pm0.2}$
	BAIT	36.7	56.5	49.7	36.4	*	*	*	*	*	*	*	*
	AccuACL	44.2 ± 4.6	40.4 ±6.1	$\underline{50.1}{\pm}2.6$	28.1 ± 1.8	30.5 ± 0.2	27.0 ± 0.4	36.3 ± 0.4	15.0 ± 0.5	12.5 ± 0.4	24.0 ± 0.8	15.7 ± 0.6	$11.4{\pm}0.3$
ACE	Full	$57.6{\scriptstyle\pm1.2}$	$27.9{\scriptstyle\pm0.3}$	$63.7{\scriptstyle\pm0.5}$	$22.4{\scriptstyle\pm1.0}$	$34.9{\scriptstyle\pm1.2}$	$34.6{\scriptstyle\pm0.8}$	$40.1{\scriptstyle\pm0.7}$	30.5 ± 0.8	$16.8{\scriptstyle\pm0.4}$	36.5 ± 0.7	$20.2{\scriptstyle\pm0.3}$	$30.9{\scriptstyle\pm0.2}$
	Uniform	$41.3{\scriptstyle\pm1.3}$	25.9 ± 1.8	49.6 ±1.6	<u>20.0</u> ±3.6	28.4 ± 0.4	30.0 ± 0.6	34.2 ±0.6	<u>25.5</u> ±1.1	12.3 ± 1.0	27.6 ± 0.9	$\underline{14.6}$ ± 0.2	23.2 ± 0.5
	Entropy	$\underline{42.7}{\pm}1.0$	$30.3{\scriptstyle\pm1.6}$	$47.0{\pm}2.5$	28.8 ± 2.9	$24.9{\scriptstyle\pm0.4}$	$37.1{\scriptstyle\pm0.6}$	$31.5{\pm}0.5$	31.4 ± 0.7	$9.5{\scriptstyle\pm0.4}$	27.8 ± 0.5	$11.9{\scriptstyle\pm0.2}$	$23.4{\scriptstyle\pm0.6}$
	LeastConf	$41.8{\scriptstyle\pm2.4}$	$32.5{\scriptstyle\pm1.1}$	$47.4{\scriptstyle\pm1.6}$	$27.8{\scriptstyle\pm2.4}$	$25.7{\scriptstyle\pm0.4}$	$35.7{\scriptstyle\pm0.3}$	30.9 ± 1.0	31.7 ± 0.6	$9.9{\pm}0.3$	$28.5{\scriptstyle\pm0.2}$	$11.8{\scriptstyle\pm0.2}$	$23.9{\scriptstyle\pm0.6}$
	kCenter	$36.8{\scriptstyle\pm0.6}$	$33.0{\scriptstyle\pm2.2}$	$43.2{\pm}3.0$	$29.6{\scriptstyle\pm4.6}$	$27.4{\scriptstyle\pm0.6}$	$34.0{\scriptstyle\pm0.7}$	$33.1{\scriptstyle\pm0.7}$	28.8 ± 0.9	$11.4{\pm}0.2$	29.4 ± 0.5	$13.7{\scriptstyle\pm0.3}$	$25.3{\scriptstyle\pm0.1}$
	BADGE	$41.3{\scriptstyle\pm2.4}$	$32.3{\scriptstyle\pm1.9}$	$47.8{\scriptstyle\pm0.9}$	$26.7{\scriptstyle\pm0.7}$	$26.5{\scriptstyle\pm0.3}$	$35.9{\scriptstyle\pm0.4}$	$33.4{\scriptstyle\pm0.7}$	30.3 ± 0.7	$11.1{\pm}0.4$	$28.5{\scriptstyle\pm0.5}$	$13.5{\scriptstyle\pm0.3}$	$24.5{\scriptstyle\pm0.5}$
	BAIT	41.2	33.3	48.0	28.3	*	*	*	*	*	*	*	*
	AccuACL	43.7 ±1.7	20.8 ±1.3	48.1±1.1	17.7±1.4	28.4 ±0.6	26.1 ±0.4	33.9±1.0	20.9 ±1.2	13.4 ±0.1	24.9 ±0.5	16.1 ± 0.4	20.5 ±0.2

Experiments



 AccuACL shows superior performance for various labeling budget

AccuACL is able to achieve SOTA ACL performance with reasonable complexity

Thank You!

Jaehyun Park Dongmin Park Jae-Gil Lee

KRAFTON