

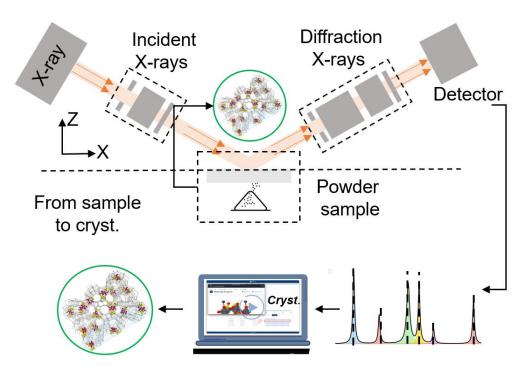
SimXRD-4M: Big Simulated X-ray Diffraction Data and Crystal Symmetry Classification Benchmark

Bin Cao [1], Yang Liu^[1,2], Zinan Zheng^[1], Ruifeng Tan^[1], Jia Li^[*1,2], Tong-yi Zhang^[*1]

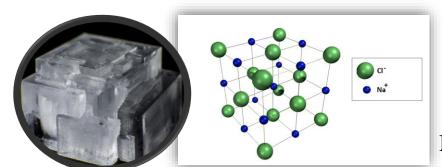
[1] HKUST(GZ) [2] HKUST



Motivation



- The AI Lab will pioneer new methods for material synthesis.
- Powder XRD is crucial for detecting crystal structures.
- Intelligent analysis and corresponding software systems must undergo a new revolution.



Matter & Structure

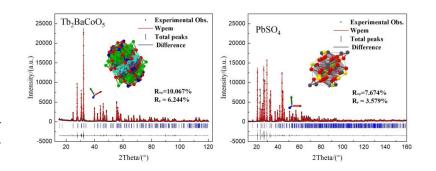
Diffraction pattern



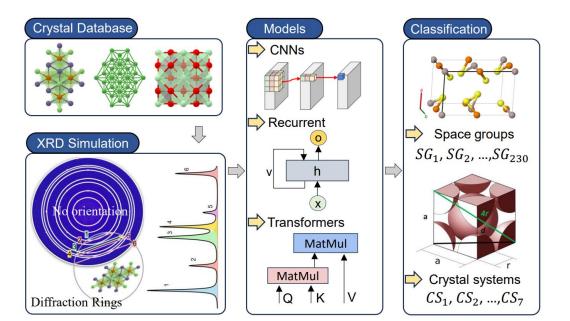
Detection results

Table: Summaries of existing powder XRD datasets. ICSD refers to the commercial Inorganic Crystal Structure Database. MP denotes the open-sourced Material Project.

Dataset	#XRD Pattern	#Structure	Open Access	Simulated	Crystal Source	Year
RRUFF (Lafuente et al., 2015)	3,002	3,002	√	×	-	2015
XRDSP (Suzuki et al., 2020)	169,536	169,536	\checkmark	\checkmark	ICSD	2020
CNN (Lee et al., 2020)	1,785,405	170	×	\checkmark	ICSD	2020
PQNet (Dong et al., 2021)	250,000	1	\checkmark	\checkmark	ICSD	2021
XRDAutoAnalyzer (Szymanski et al., 2021)	38,250	150	\checkmark	\checkmark	ICSD	2021
XRDIsAllYouNeed (Lee et al., 2022)	328,503	$189,476&139,027^{1}$	×	\checkmark	ICSD&MP	2022
AdvancedXRDAnalysis (Lee et al., 2023)	29,569,650	197,131	×	\checkmark	ICSD	2023
CrySTINet (Chen et al., 2024)	100	100	\checkmark	\checkmark	ICSD	2024
CPIČANN (Cao, 2024)	692,190	23,073	\checkmark	\checkmark	COD	2024
SimXRD	4,065,346	119,569	\checkmark	\checkmark	MP	2024



Lack of a large-scale and high-quality dataset
Insufficient evaluation on real XRD patterns
Limited exploration on out-library identification

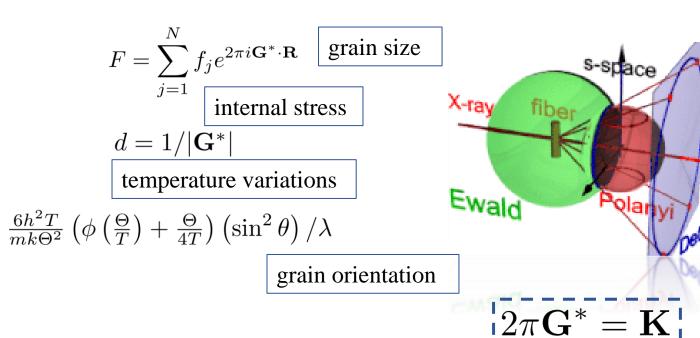


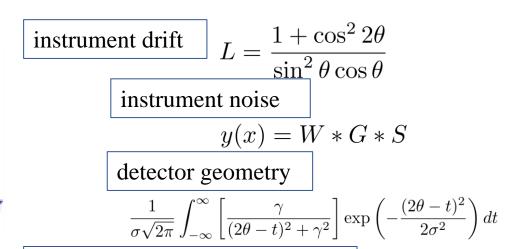
Contributions

Https://github.com/Bin-Cao/SimXRD

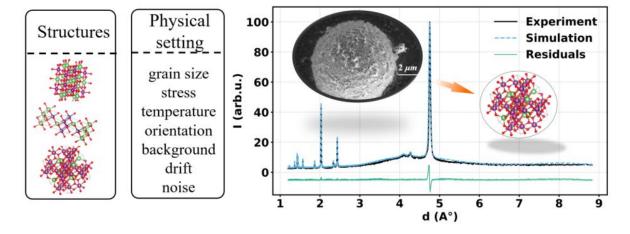
- Novel method to generate high-fidelity, million-scale simulated XRD patterns for machine learning.
- Revealing the long-tail distribution of crystals and proposing insights to enhance minority accuracy.
- Providing solutions for studying crystal out-of-library generalization.
- Experimental validation demonstrating robust generalization.

Results | Simulation





scattering induced background



Contributions

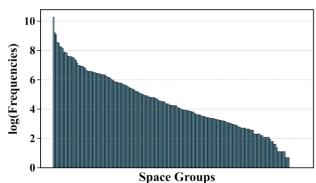
Experimental XRD pattern of a Li-rich layered oxide cathode (Li₂MnO₃) was compared with simulated pattern generated using PysimXRD. The simulation incorporates multiphysical coupling, producing patterns that closely match experimental measurement with minimal residual errors.

Results | In /out library crystal symmetry classification

Madal # Come # Door and # Dooling E and 1			D-f	Crystal System				Space Group							
Model # Conv. # Dropout # Pooling Ensemble		Ref.	Accuracy	F1	Precision	Recall	Гime (ms)	Accuracy	F1	Precision	ı Recall T	ime (ms)			
CNN1	3	√	AvgPool	×	(Park et al., 2017)	0.559	0.418	0.427	0.431	3.2	0.241	0.002	0.001	0.005	3.4
CNN2	2	×	MaxPool	×	(Lee et al., 2020)	0.466	0.236	0.222	0.283	1.8	0.241	0.002	0.001	0.005	1.9
CNN3	3	×	MaxPool	×	(Lee et al., 2020)	0.531	0.328	0.315	0.369	3.5	0.241	0.002	0.001	0.005	3.6
CNN4	7	\checkmark	MaxPool	×	(Wang et al., 2020)	0.316	0.069	0.045	0.143	1.4	0.241	0.002	0.001	0.005	1.4
CNN5	3	\checkmark	AvgPool	\checkmark	(Maffettone et al., 2021)	0.517	0.394	0.489	0.378	0.6	0.295	0.022	0.025	0.026	0.6
CNN6	7	\checkmark	MaxPool	×	(Dong et al., 2021)	0.316	0.069	0.045	0.143	65.0	0.241	0.002	0.001	0.005	65.0
CNN7	6	\checkmark	MaxPool	\checkmark	(Szymanski et al., 2021)	0.862	0.863	0.887	0.845	6.8	0.588	0.124	0.147	0.130	6.9
CNN8	14	\checkmark	MaxPool	×	(Lee et al., 2022)	0.377	0.162	0.148	0.221	3.1	0.241	0.002	0.001	0.005	3.1
CNN9	3	\checkmark	MaxPool	×	(Le et al., 2023)	0.795	0.817	0.826	0.810	1.9	0.599	0.597	0.681	0.556	1.9
CNN10	4	\checkmark	MaxPool	×	(Le et al., 2023)	0.870	0.888	0.892	0.885	1.8	0.705	0.792	0.853	0.759	1.8
CNN11	3	\checkmark	None	×	(Salgado et al., 2023)	0.902	0.922	0.932	0.914	4.8	0.758	$\overline{0.750}$	0.735	0.828	4.8
	MLP					0.316	0.069	0.045	0.143	1.6	0.241	0.002	0.001	0.005	1.6
	RNN			0.381	0.183	0.200	0.202	8.0	0.245	0.003	0.002	0.007	8.1		
	LSTM				0.728	0.743	0.762	0.728	14.6	0.515	0.156	0.224	0.151	14.6	
	GRU				0.765	0.788	0.802	0.777	15.1	0.575	0.273	0.400	0.251	15.1	
In library Bidirectional-RNN Bidirectional-LSTM Bidirectional-GRU			0.365	0.155	0.197	0.185	14.7	0.245	0.003	0.002	0.007	14.7			
			0.791	0.814	0.825	0.805	29.1	0.559	0.384	0.533	0.346	29.1			
			0.800	0.826		0.816	30.3	0.627	0.451	0.609	0.408	30.3			
			Trans	sformer		0.338	0.127	0.172	0.155	83.4	0.241	0.002	0.001	0.005	83.5
	iTransformer					0.627	0.611	0.652	0.599	1.9	0.388	0.135	0.320	0.118	1.9
PatchTST					0.720	0.752	0.766	0.740	3.3	0.631	0.811	0.850	0.784	3.3	

Baselines:

- CNN-based Models: CNN-11
- Recurrent Models: RNN,LSTM,GRU. Bidirectional models
- Transformers: Transformer, iTransformer, PatchTST



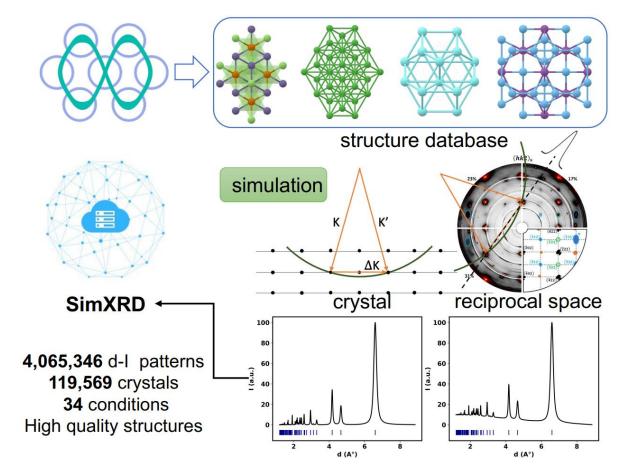
Long-tailed distribution of space group

Out library

Task	Cry	stal Syster	n Classification	1	Space Group Classification					
Model	Accuracy	F1	Precision	Recall	Accuracy	F1	Precision	Recall		
CNN1	0.627	0.437	0.565	0.472	0.285	0.003	0.002	0.006		
CNN2	0.606	0.419	0.428	0.425	0.285	0.003	0.002	0.006		
CNN3	0.659	0.501	0.496	0.507	0.285	0.003	0.002	0.006		
CNN4	0.378	0.078	0.054	0.142	0.285	0.003	0.002	0.006		
CNN5	0.495	0.278	0.285	0.283	0.285	0.003	0.002	0.006		
CNN6	0.378	0.078	0.054	0.142	0.285	0.003	0.002	0.006		
CNN7	0.673	0.607	0.633	0.608	0.429	0.053	0.050	0.072		
CNN8	0.612	0.452	0.448	0.497	0.286	0.003	0.001	0.006		
CNN9	0.675	0.632	0.629	0.644	0.439	0.099	0.137	0.113		
CNN10	0.692	0.659	0.650	0.674	0.430	0.107	0.168	0.121		
CNN11	0.702	0.672	0.659	0.690	0.481	<u>0.136</u>	0.167	0.150		
MLP	0.378	0.078	0.054	0.142	0.285	0.003	0.002	0.006		
RNN	0.409	0.162	0.149	0.178	0.274	0.003	0.002	0.009		
LSTM	0.657	0.575	0.583	0.589	0.431	0.070	0.092	0.085		
GRU	0.707	0.678	0.656	0.709	0.480	0.110	0.143	0.125		
Bidirectional-RNN	0.403	0.157	0.146	0.174	0.295	0.004	0.003	0.008		
Bidirectional-LSTM	0.704	0.663	0.654	0.678	0.349	0.035	0.044	0.051		
Bidirectional-GRU	0.722	0.699	0.697	0.705	0.498	0.138	0.192	0.149		
Transformer	0.376	0.138	0.231	0.158	0.285	0.003	0.005	0.006		
iTransformer	0.606	0.495	0.519	0.526	0.367	0.053	0.085	0.064		
PatchTST	0.656	0.616	0.612	0.627	0.375	0.067	0.093	0.082		

Contributions

- 1 Most existing CNN models are unsuitable for symmetry identification within the large scale PXRD database
- 2 Convolutional neural networks without pooling have achieved the best performance in most tasks
- 3 Bidirectional recurrent models consistently outperform their unidirectional counterparts
- 4 PatchTST achieves a significant performance improvement compare to Transformer



SimXRD: Https://openreview.net/pdf?id=mkuB677eMM

- 1: We introduce **SimXRD**, the **largest open-source** XRD pattern dataset for **symmetry identification**.
- 2: Data analysis reveals that the symmetry labels follow a long-tailed distribution.
- 3: We evaluate 21 models on two different splitting patterns (**in-library** and **out-of-library**) and find that most existing models struggle to accurately predict the symmetry of low-frequency classes, even when addressing for **class imbalance**. This limitation hinders their real-world applicability.
- 4: Our results emphasize the importance of modeling long-tailed sequence classification and conducting **comprehensive comparison** to accurately assess the capabilities of various models.