

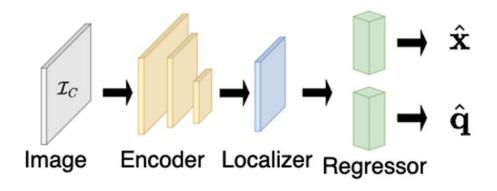
### **GS-CPR: Efficient Camera Pose Refinement via 3D Gaussian Splatting**

Changkun Liu<sup>1</sup>, Shuai Chen<sup>2</sup>, Yash Bhalgat<sup>2</sup>, Siyan Hu<sup>1</sup>, Ming Cheng<sup>3</sup>, Zirui Wang<sup>2</sup>, Victor Prisacariu<sup>2</sup> and Tristan Braud<sup>1</sup>

**ICLR 2025** 

Scan & Try !!!





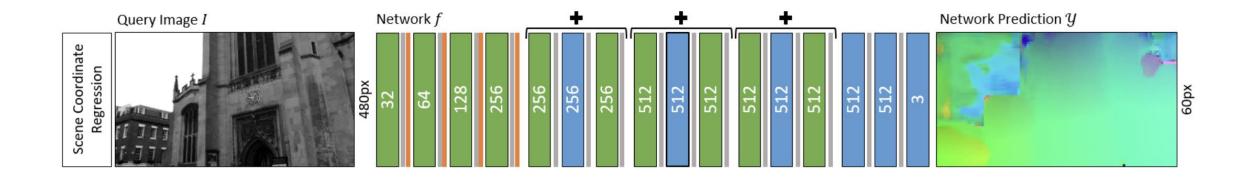





## **Absolute pose regression (APR) methods**

#### End-to-end camera pose regression

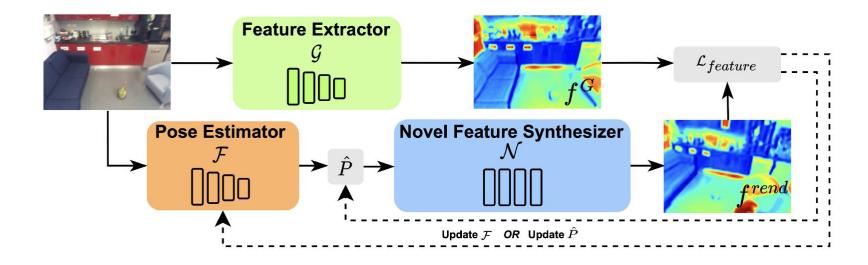



- Fast inference and low memory footprint.
- Low accuracy and prone to overfit training set [1][2].

- [1] Sattler, Torsten, et al. "Understanding the limitations of cnn-based absolute camera pose regression." CVPR, 2019
- [2] Liu, Changkun, et al. "Hr-apr: Apr-agnostic framework with uncertainty estimation and hierarchical refinement for camera relocalisation." IEEE ICRA, 2024

## Scene coordinate regression (SCR) methods

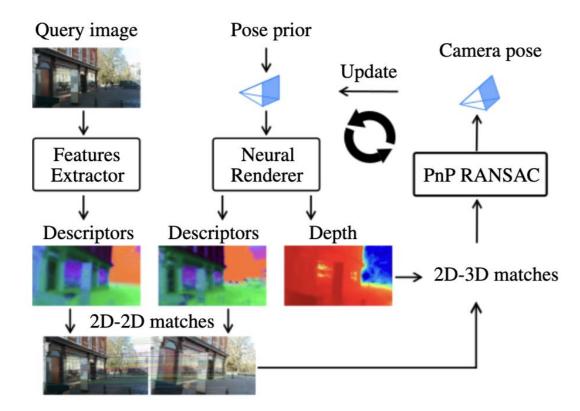
#### End-to-end 2D-3D regression


- Accurate in small-scale indoor scenes & relatively fast inference
- Low accuracy in large scenes



Brachmann, Eric, and Carsten Rother. "Visual camera re-localization from RGB and RGB-D images using DSAC." IEEE TPAMI, 2021.

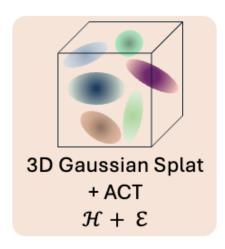
## Neural Rendering-based Pose (NRP) Estimation/Refinement


- Can improve APR methods
- Low-efficiency iterative refinement
- Cannot improve SCR methods
- Lower accuracy VS. classical structure-based methods



Chen, Shuai, et al. "Neural refinement for absolute pose regression with feature synthesis." CVPR, 2024.

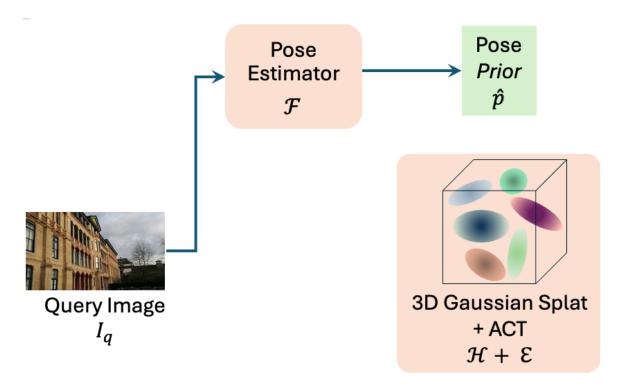
## Neural Rendering-based Pose (NRP) Estimation/Refinement


- Utilize geometry information
- Lower accuracy VS. classical structure-based methods
- Need to train scene-specific descriptors



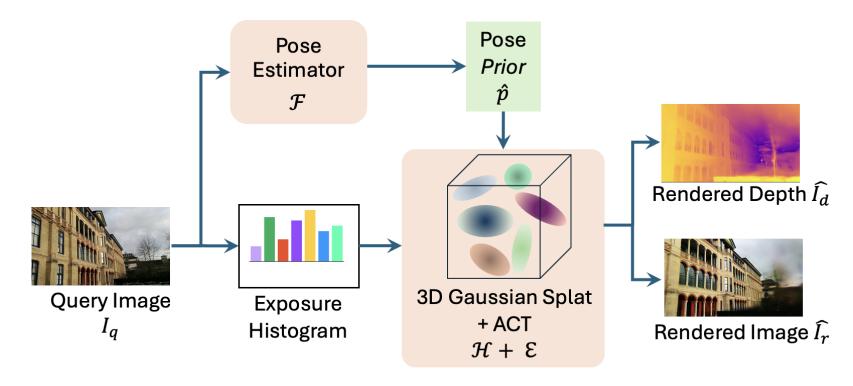
Moreau, Arthur, et al. "Crossfire: Camera relocalization on self-supervised features from an implicit representation." ICCV, 2023.

- Efficient one-shot refinement achieves SOTA accuracy
- Direct RGB matching utilizing MASt3R [1]


Pose Estimator  ${\cal F}$ 

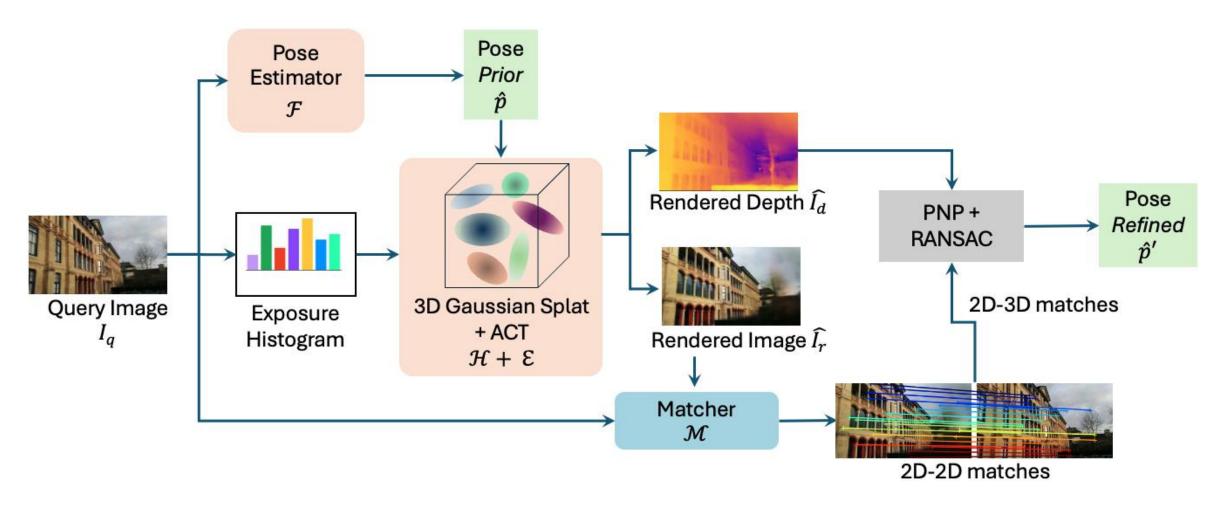


We assume the availability of a pretrained pose estimator (APR/SCR) and a 3DGS model of the scene.


Leroy, Vincent, Yohann Cabon, and Jérôme Revaud. "Grounding image matching in 3d with mast3r." ECCV, 2024.

- Efficient one-shot refinement achieves SOTA accuracy
- Direct RGB matching utilizing MASt3R




For a query image, we first obtain an initial estimated pose from the pose estimator (APR/SCR). Our goal is to output a refined pose.

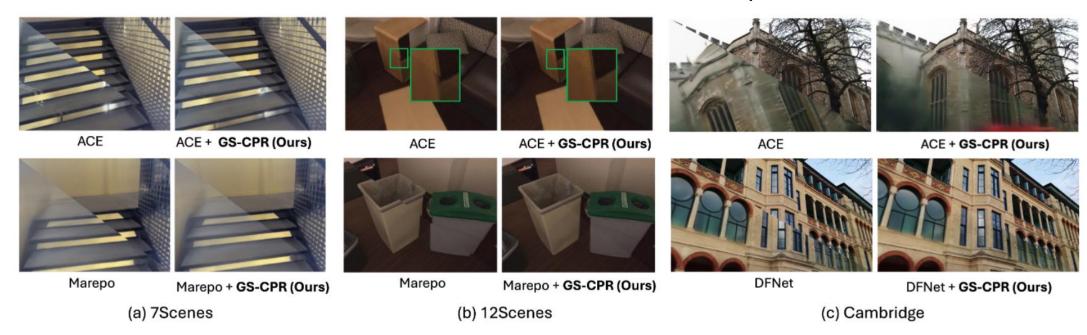
- Efficient one-shot refinement achieves SOTA accuracy
- Direct RGB matching utilizing MASt3R



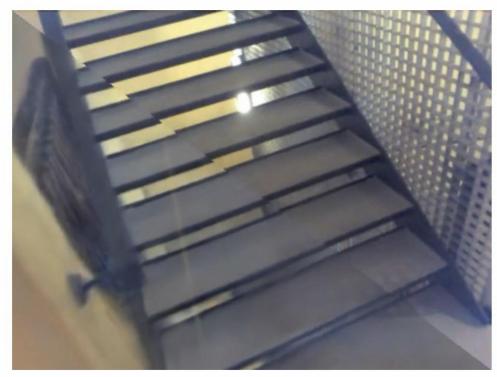
Given the initial estimated pose, the 3DGS model renders an RGB image and a depth map.

- Efficient one-shot refinement achieves SOTA accuracy
- Direct RGB matching utilizing MASt3R




Finally, we obtain the refined pose by feeding these 2D-3D matches into PnP + RANSAC

#### **Visualization**


Each figure is divided by a diagonal line, with the bottom left part rendered using the estimated/refined pose and the top right part displaying the ground truth image.



t refers to the refinement step



## Visualization on Pose Refinement Before VS. After







ACE + GS-CPR (ours)

Each figure is divided by a diagonal line, with the bottom left part rendered using the estimated/refined pose and the top right part displaying the ground truth image.

## **Exposure Adaptation and Moving Objects Filtering**

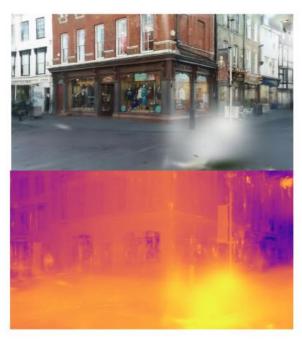


(a) Ground Truth



(b) Scaffold-GS/PSNR:16.5 dB




(c) Ours/PSNR:18.4 dB



GT image



(c) w. Seg Mask + w. ACT



(d) w/o. Seg Mask + w/o. ACT

# **Quantitative Results (Indoor)**

#### 7Scenes

|               | Methods                                                                                                                                  | Avg. ↑ [5cm, 5°]                                           | Avg. ↑ [2cm, 2°]                                      |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|
| APR           | DFNet<br>Marepo                                                                                                                          | 43.1<br>84.0                                               | 8.4                                                   |
| IR+SfM points | HI oc (SP + SG) (Sarlin et al. 2020: 2019)                                                                                               | 95.7<br>95.7                                               | 84.5<br>87.2                                          |
| SCR           | DSAC*<br>ACE<br>GLACE                                                                                                                    | 97.8<br>97.1<br>95.6                                       | 80.7<br>83.3<br>82.2                                  |
| NRP           | DFNet + NeFeS <sub>50</sub> HR-APR NeRFMatch NeRFLoc (Liu et al., 2023) DFNet + GS-CPR (ours) Marepo + GS-CPR (ours) ACE + GS-CPR (ours) | 78.3<br>76.4<br>78.4<br>89.5<br>94.2<br>99.4<br><b>100</b> | 45.9<br>40.2<br>-<br>-<br>76.5<br>89.6<br><b>93.1</b> |

#### 12Scenes

| Methods                | Avg. Err ↓ [cm/°] | Avg. $\uparrow$ [5cm, 5°] | Avg. $\uparrow$ [2cm, 2°] |
|------------------------|-------------------|---------------------------|---------------------------|
| Marepo                 | 2.1/1.04          | 95                        | 50.4                      |
| DSAC*                  | <b>0.5</b> /0.25  | 99.8                      | 96.7                      |
| ACE                    | 0.7/0.26          | 100                       | 97.2                      |
| GLACE                  | 0.7/0.25          | 100                       | 97.5                      |
| Marepo + GS-CPR (ours) | 0.7/0.28          | 98.9                      | 90.9                      |
| ACE + GS-CPR (ours)    | 0.5/0.21          | 100                       | 98.7                      |

## **Quantitative Results (Outdoor)**

Cambridge Landmarks

|                 | Methods                                                                                                                                                    | Kings                                    | Hospital                                                                                  | Shop                                                                                     | Church                                                                                 | $Avg. \downarrow [cm/^{\circ}]$                                                      |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| IR + SfM points | HLoc (SP+SG) (k=1)<br>HLoc (SP+SG) (k=10)                                                                                                                  | 13/0.22<br>11/0.2                        | 18/0.38<br>15/0.31                                                                        | 6/0.25<br>4/0.21                                                                         | 9/0.28<br>7/0.22                                                                       | 12/0.28<br>9/0.24                                                                    |
| APR             | PoseNet MS-Transformer LENS (Moreau et al., 2022) DFNet PMNet (Lin et al., 2024)                                                                           | 85/1.45<br>33/0.5<br>73/2.37             | 175/2.43<br>44/0.9<br>200/2.98                                                            | 88/3.20<br>27/1.6<br>67/2.21                                                             | 237/5.94<br>166/4.12<br>53/1.6<br>137/4.02<br>133/3.73                                 | 129/2.80<br>39/1.15<br>119/2.90                                                      |
| SCR             | ACE<br>GLACE <sup>1</sup>                                                                                                                                  |                                          | 31/0.61<br>20/0.41                                                                        | 5/0.3<br>5/0.22                                                                          | 19/0.6<br>9/0.3                                                                        | 21/0.47<br>14/0.32                                                                   |
| NRP             | FQN-MN CrossFire DFNet + NeFeS <sub>30</sub> <sup>2</sup> DFNet + NeFeS <sub>50</sub> HR-APR MCLoc DFNet + <b>GS-CPR</b> (ours) ACE + <b>GS-CPR</b> (ours) | 37/0.54<br>36/0.58<br>31/0.42<br>23/0.32 | 54/0.8<br>43/0.7<br>98/1.61<br>52/0.88<br>53/0.89<br>39/0.73<br>42/0.74<br><b>21/0.40</b> | 13/0.6<br>20/1.2<br>17/0.60<br>15/0.53<br>13/0.51<br>12/0.45<br>10/0.36<br><b>5/0.24</b> | 58/2<br>39/1.4<br>42/1.38<br>37/1.14<br>38/1.16<br>26/0.8<br>27/0.62<br><b>13/0.40</b> | 38/1<br>37/1<br>49/1.06<br>35/0.77<br>35/0.78<br>27/0.6<br>26/0.51<br><b>15/0.33</b> |

We report the accuracy based on official open-source models (Wang et al., 2024a).
Results of DFNet + NeFeS<sub>30</sub> taken from Liu et al. (2024a).

## Thanks for watching



Project Page: <a href="https://xrim-lab.github.io/GS-CPR/">https://xrim-lab.github.io/GS-CPR/</a>

**ICLR 2025** 

Scan & Try !!!

