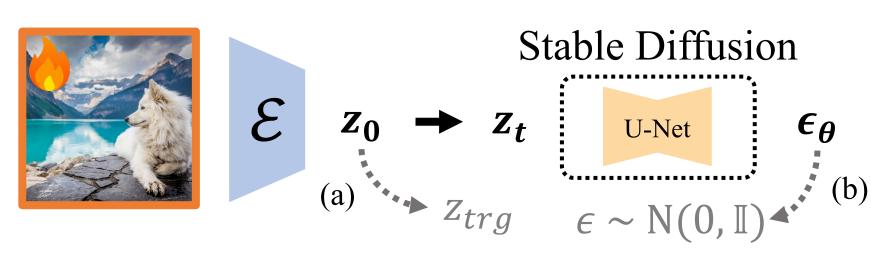
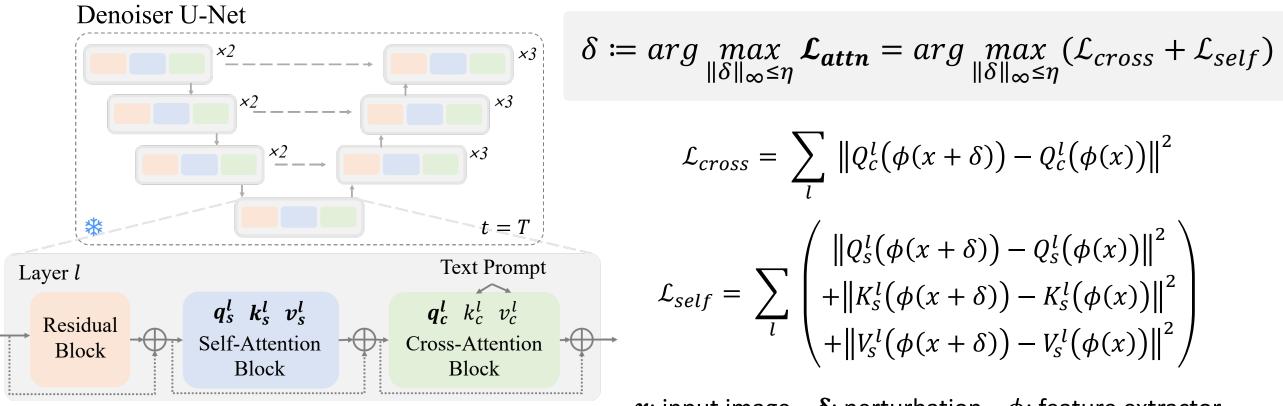


AdvPaint: Protecting Images from Inpainting Manipulation via Adversarial Attention Disruption Joonsung Jeon, Woo Jae Kim, Suhyeon Ha, Sooel Son*, and Sung-Eui Yoon*



I. Motivation

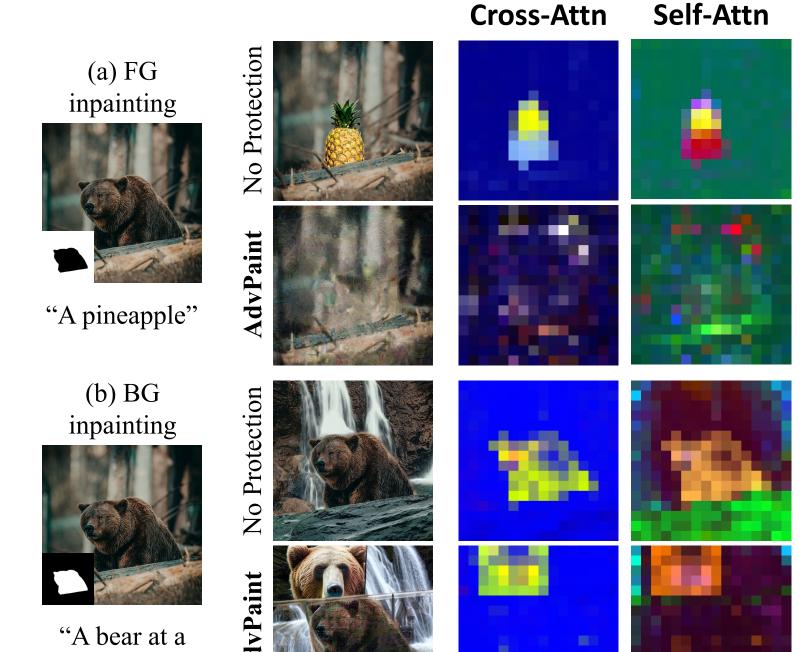
- ✓ Adversarial perturbation δ is utilized to protect images from unauthorized manipulations (i.e., *image-to-image*, *text-to-image*).
- ✓ However, preventing unauthorized inpainting has been rarely assessed.



- ✓ Problem #1: Unlike I2I or T2I, some regions of perturbation are covered by the given mask in inpainting tasks.
- ✓ Problem #2: Baselines (a), (b)
 - Only utilize a single perturbation
 - Only shift the latent representation
 - Overlooking the *implicit steps* within the generation process

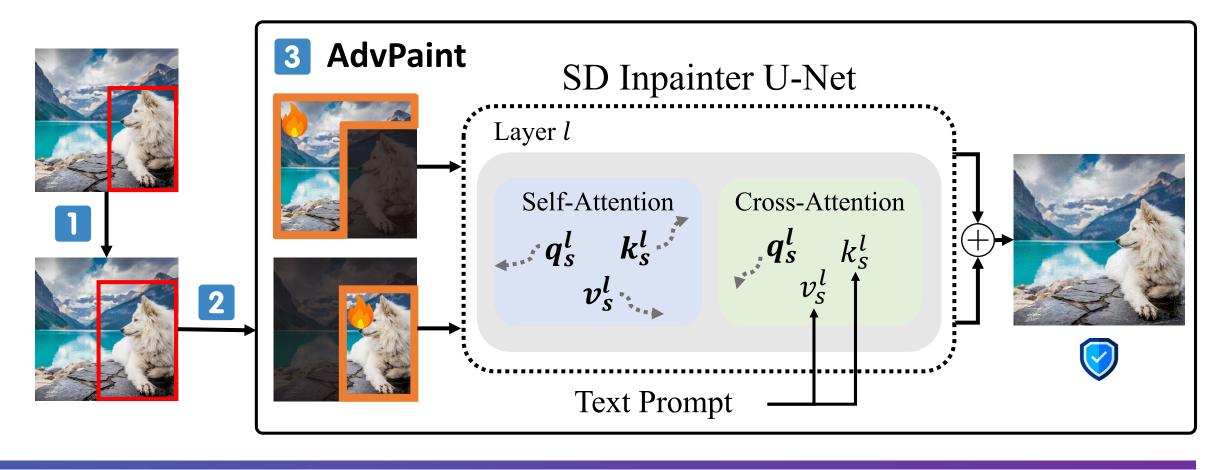
II. Methodology

1 Adversarial Attack on Attention Mechanism


- x: input image δ : perturbation ϕ : feature extractor Q, K, V: linear projection operator of q, k, v
- Self-attention blocks: understand the semantics & spatial structure
- Cross-attention blocks: align the generation with the external condition

III. Experiments

✓ Attention Mechanism


1) Attention Maps

waterfall."

2 Two-stage Optimization

- ✓ Apply separate protection for *objects* and *BG*
- 1 Enlarge the bounding-box to fully cover the object
- 2 Separate fore- (FG) and back-ground (BG) with the bounding-box
- 3 Optimize **twice** via \mathcal{L}_{attn}

2) Results

		Foreground Inpainting					Background Inpainting						
		m^{seg}		m^{bb}		m^{seg}		m^{bb}					
	Optimization Methods	FID ↑	Prec ↓	LPIPS ↑	FID ↑	Prec ↓	LPIPS \uparrow	FID ↑	Prec ↓	LPIPS \uparrow	FID ↑	Prec ↓	LPIPS ↑
	Photoguard	230.49	0.5244	0.6494	185.86	0.7212	0.6236	118.85	0.4332	0.4141	132.51	0.1844	0.5220
	AdvDM	232.39	0.3030	0.5287	181.13	0.4794	0.5231	94.49	0.5772	0.3111	116.60	0.2420	0.4191
A	Mist	235.81	0.4590	0.5541	191.00	0.6490	0.5421	123.48	0.4004	0.3852	155.57	0.1602	0.5016
	CAAT	232.83	0.3430	0.5274	181.21	0.5314	0.5192	98.22	0.5414	0.3199	118.68	0.2382	0.4182
	SDST	212.90	0.5658	0.5042	174.85	0.7244	0.4994	112.17	0.4406	0.3841	133.15	0.2054	0.4809
	SD Inpainter + \min_{δ} Eq.(a)	211.35	0.5644	0.5780	180.40	0.7214	0.5894	128.01	0.4006	0.4745	146.39	0.1374	0.5914
B	SD Inpainter + \max_{δ} Eq.(b)	224.81	0.3860	0.4705	199.37	0.5186	0.4878	116.60	0.4832	0.3844	142.37	0.2078	0.4795
	SD Inpainter + \min_{δ} Eq.(b)	182.12	0.6124	0.5267	154.27	0.7560	0.5273	97.44	0.5852	0.386	107.43	0.2692	0.4902
	ADVPAINT	347.88	0.0570	0.6731	289.63	0.1536	0.6762	219.07	0.2148	0.5064	303.90	0.0936	0.6105
					•								

AdvPaint No Protection Photoguard

		1.0	n egi ound	птрани	ng	Dackground Inpainting					
_		\overline{m}	seg	m	bb	$ {m}$	seg	$oxed{m^{bb}} { m FID} \uparrow { m Prec} \downarrow$			
_	Stage	FID ↑	Prec ↓	FID ↑	Prec ↓	FID ↑	Prec ↓	FID ↑	Prec ↓		
	1	345.76	0.0628	271.73	0.2056	191.15	0.2418	266.00	0.0938		
	2	347.88	0.0570	289.63	0.1536	219.07	0.2148	303.90	0.0936		

- ✓ Comparison with
- A Previous methods
- **⊙** Single perturbation (**⇄ 2**)

"A gorilla in a forest clearing."

"A tree