

Boltzmann-Aligned Inverse Folding Model as a Predictor of Mutational Effects on Protein-Protein Interactions

Xiaoran Jiao, Weian Mao, Wengong Jin, Peiyuan Yang, Hao Chen, Chunhua Shen

Complex AB

bound state

Input: 3D Coordinates

Importance

- ightharpoonup Predicting $\Delta\Delta G$ is critical for modulating protein-protein interactions essential for developing treatments, but limited by data scarcity.
- ➤ The availability of untrained protein sequence and structure data is becoming limited, emphasizing the need for new data modalities to train advanced models.

Contribution

ightharpoonup Establish a bidirectional connection between log-likelihood in inverse folding models and $\Delta\Delta G$ values, enabling mutual enhancement.

$G_{ m A}^{ m wild-type} + G_{ m B}^{ m wild-type}$ $\Delta G = \Delta G^{ m mutant} - \Delta G^{ m wild-type}$ $= \Delta G_{ m bound}^{ m wt o mut} - \Delta G_{ m unbound}^{ m wt o mut}$ $\Delta G^{ m wild-type}$ $= \Delta G_{ m bound}^{ m wt o mut} - \Delta G_{ m unbound}^{ m wt o mut}$ $G_{ m AB}^{ m mutant}$

Chain A

Chain B

Inverse Folding Model
Structure Encoder

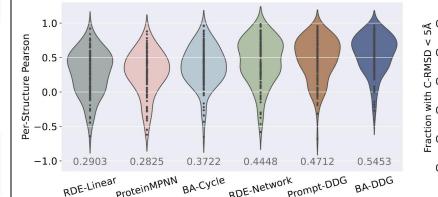
Sequence Decoder

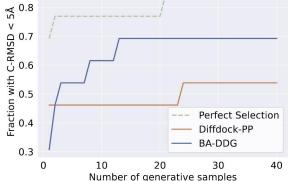
Output: log-likehood

unbound state

Input: Sequences

Boltzmann Alignment: Bridging Probability & Energy Thermodynamic Cycle + Boltzmann Distribution


$$\begin{split} \Delta G &= G_{\text{bnd}} - G_{\text{unbnd}} = -k_{\text{B}}T \cdot (\log p_{\text{bnd}} - \log p_{\text{unbnd}}) \\ &= -k_{\text{B}}T \cdot (\log p(\mathcal{X}_{\text{bnd}} \mid \mathcal{S}_{\text{AB}}) - \log p(\mathcal{X}_{\text{unbnd}} \mid \mathcal{S}_{\text{AB}})) \\ &= -k_{\text{B}}T \cdot \left(\log \frac{p(\mathcal{S}_{\text{AB}} \mid \mathcal{X}_{\text{bnd}}) \cdot p(\mathcal{X}_{\text{bnd}})}{p(\mathcal{S}_{\text{AB}})} - \log \frac{p(\mathcal{S}_{\text{AB}} \mid \mathcal{X}_{\text{unbnd}}) \cdot p(\mathcal{X}_{\text{unbnd}})}{p(\mathcal{S}_{\text{AB}})}\right) \\ &= -k_{\text{B}}T \cdot \log \frac{p(\mathcal{S}_{\text{AB}} \mid \mathcal{X}_{\text{bnd}}) \cdot p(\mathcal{X}_{\text{bnd}})}{p(\mathcal{S}_{\text{AB}} \mid \mathcal{X}_{\text{unbnd}}) \cdot p(\mathcal{X}_{\text{unbnd}})} \end{split}$$


$$\begin{split} \Delta \Delta G &= \Delta G^{\text{mut}} - \Delta G^{\text{wt}} \\ &= -k_{\text{B}}T \cdot \left(\log \frac{p(\mathcal{S}_{\text{AB}}^{\text{mut}} \mid \mathcal{X}_{\text{bnd}}^{\text{mut}}) \cdot p(\mathcal{X}_{\text{bnd}}^{\text{mut}})}{p(\mathcal{S}_{\text{AB}}^{\text{mut}} \mid \mathcal{X}_{\text{unbnd}}^{\text{mut}}) \cdot p(\mathcal{X}_{\text{unbnd}}^{\text{mut}})} - \log \frac{p(\mathcal{S}_{\text{AB}}^{\text{wt}} \mid \mathcal{X}_{\text{bnd}}^{\text{wt}}) \cdot p(\mathcal{X}_{\text{bnd}}^{\text{wt}})}{p(\mathcal{S}_{\text{AB}}^{\text{wt}} \mid \mathcal{X}_{\text{unbnd}}^{\text{mut}}) \cdot p(\mathcal{X}_{\text{unbnd}}^{\text{wt}})} \\ &= -k_{\text{B}}T \cdot \left(\log \frac{p(\mathcal{S}_{\text{AB}}^{\text{mut}} \mid \mathcal{X}_{\text{bnd}}^{\text{mut}})}{p(\mathcal{S}_{\text{AB}}^{\text{mut}} \mid \mathcal{X}_{\text{unbnd}}^{\text{mut}})} - \log \frac{p(\mathcal{S}_{\text{AB}}^{\text{wt}} \mid \mathcal{X}_{\text{bnd}}^{\text{wt}})}{p(\mathcal{S}_{\text{AB}}^{\text{wt}} \mid \mathcal{X}_{\text{unbnd}}^{\text{wt}})}\right) \end{split}$$

Benchmark Results and Downstream Applications

- State-of-the-Art ΔΔG Prediction on SKEMPIv2
- Broader Applicability: Validated in binding energy prediction, rigid protein-protein docking, and therapeutic antibody optimization.

Supervision	Method	Per-Structure		Overall				
		Pearson ↑	Spear. ↑	Pearson ↑	Spear. ↑	RMSE ↓	MAE ↓	AUROC ↑
X	Rosetta	0.3284	0.2988	0.3113	0.3468	1.6173	1.1311	0.6562
	FoldX	0.3789	0.3693	0.3120	0.4071	1.9080	1.3089	0.6582
	ESM-1v	0.0073	-0.0118	0.1921	0.1572	1.9609	1.3683	0.5414
	PSSM	0.0826	0.0822	0.0159	0.0666	1.9978	1.3895	0.5260
	MSA Transformer	0.1031	0.0868	0.1173	0.1313	1.9835	1.3816	0.5768
	Tranception	0.1348	0.1236	0.1141	0.1402	2.0382	1.3883	0.5885
	B-factor	0.2042	0.1686	0.2390	0.2625	2.0411	1.4402	0.6044
	ESM-IF	0.2241	0.2019	0.3194	0.2806	1.8860	1.2857	0.5899
	$MIF-\Delta logit$	0.1585	0.1166	0.2918	0.2192	1.9092	1.3301	0.5749
	RDE-Linear	0.2903	0.2632	0.4185	0.3514	1.7832	1.2159	0.6059
	BA-Cycle	0.3722	0.3201	0.4552	0.4097	1.8402	1.3026	0.6657
✓	DDGPred	0.3750	0.3407	0.6580	0.4687	1.4998	1.0821	0.6992
	End-to-End	0.3873	0.3587	0.6373	0.4882	1.6198	1.1761	0.7172
	MIF-Network	0.3965	0.3509	0.6523	0.5134	1.5932	1.1469	0.7329
	RDE-Network	0.4448	0.4010	0.6447	0.5584	1.5799	1.1123	0.7454
	DiffAffinity	0.4220	0.3970	0.6609	0.5560	1.5350	1.0930	0.7440
	Prompt-DDG	0.4712	0.4257	0.6772	0.5910	1.5207	1.0770	0.7568
	ProMIM	0.4640	0.4310	0.6720	0.5730	1.5160	1.0890	0.7600
	Surface-VQMAE	0.4694	0.4324	0.6482	0.5611	1.5876	1.1271	0.7469
	BA-DDG	0.5453	0.5134	0.7118	0.6346	1.4516	1.0151	0.7726

