

Duoduo CLIP: Efficient 3D Understanding with Multi-View Images

Han-Hung Lee^{1,*}, Yiming Zhang^{1,*}, Angel X. Chang^{1,2}
¹Simon Fraser University, ²Canada CIFAR AI Chair, Amii

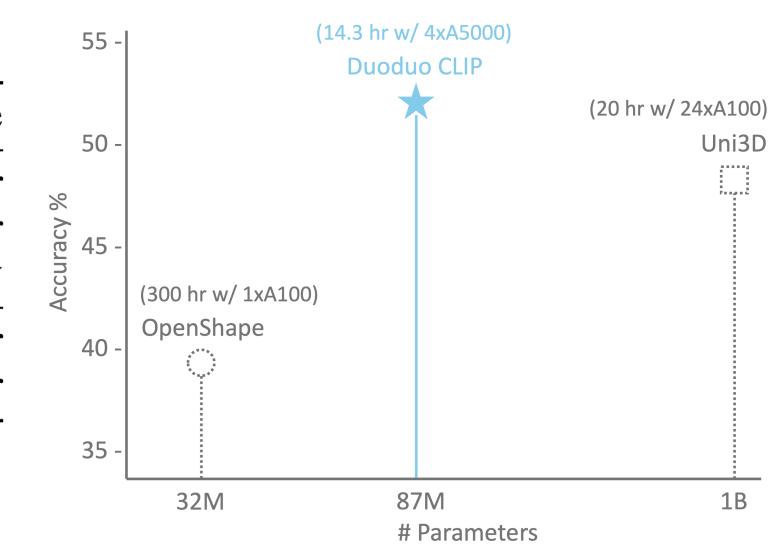
CIFAR SFU

Ours (+MVImgNet) (12F)

1. Introduction

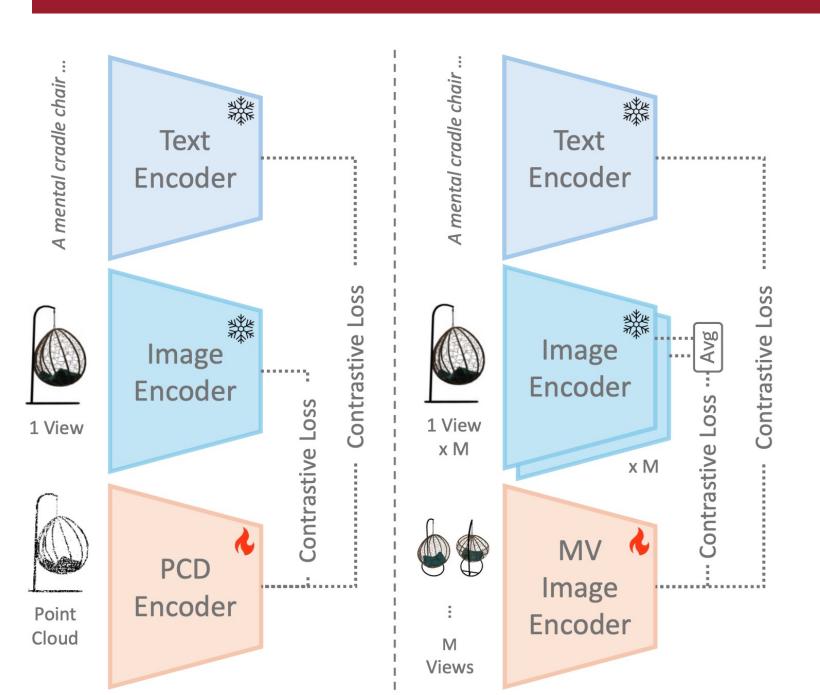
- Task: text and 3D alignment.
- Motivation: point clouds are harder to obtain and compute intensive to train.

Method	GPU	Time
OpenShape Liu et al. (2023a)	$1 \times A100 (80GB)$	300 hr
Uni3D Zhou et al. (2024)	$24 \times A100 (40GB)$	20 hr
RECON++ Qi et al. (2024)	8×A800 (80GB)	1 day
Ours (Full)	$4\times A40 (48GB)$	14.3 hr
Ours (6 layers)	4×A5000 (24GB)	14.3 hr



- Key insight: utilize multi-view images to better leverage the priors from CLIP.
- Contribution: an efficient training framework for aligning text and 3D, offering better generalization on unseen shapes and more flexible inputs.

2. Training Framework



Initialize shape encoder with CLIP

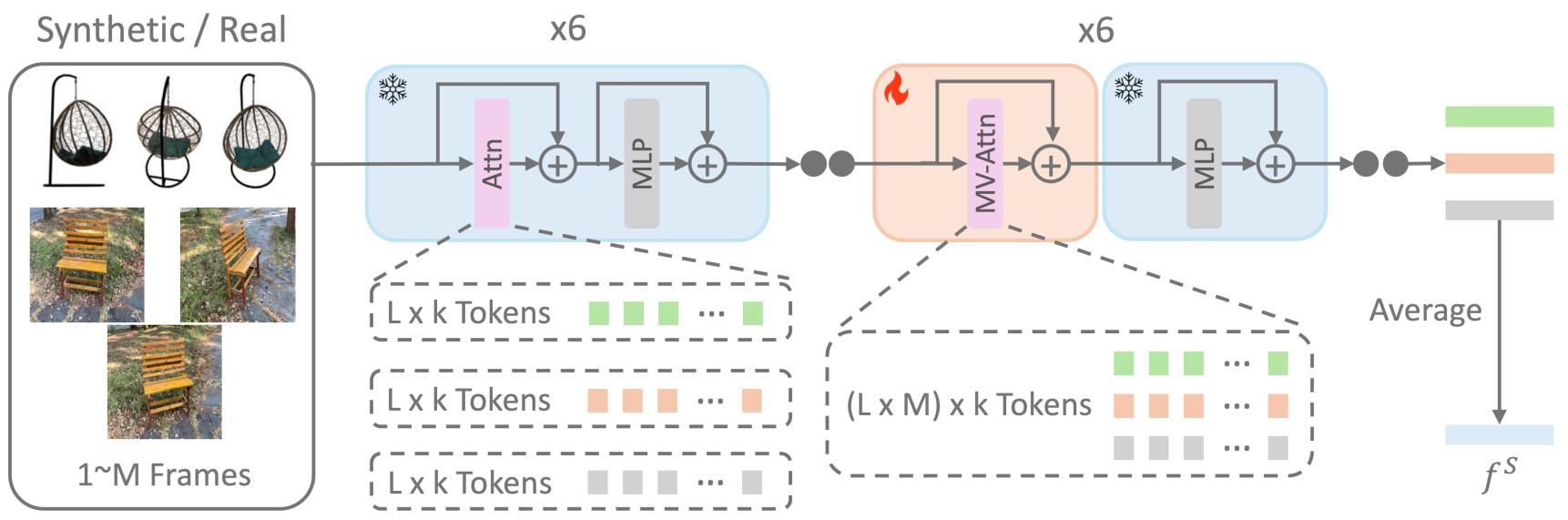
Contrastive loss to distill text and image knowledge from CLIP

$$l_i^{a \to b} = -\log \frac{\exp(\langle f_i^a, f_i^b \rangle)/\tau}{\sum_{k=1}^N \exp(\langle f_i^a, f_k^b \rangle)/\tau}$$

$$L_{CON} = \frac{1}{4N} \sum_{i=1}^{N} (l_i^{S \to T} + l_i^{T \to S} + l_i^{S \to I} + l_i^{I \to S})$$

3. Model Architecture

Layers are frozen for training efficiency and preserve generalization.



Flexible encoding of arbitrary M views!

References

[1] Liu, M, et al. "Openshape: Scaling up 3d shape representation towards open-world understanding." NeurIPS 2023 [2] Zhou, J, et al. "Uni3d: Exploring unified 3d representation at scale." *ICLR 2024*

[3] Radford, A, et al. "Learning transferable visual models from natural language supervision." PmLR, 2021.

Acknowledgement
This work was funded by a CIFAR AI Chair, an NSERC Discovery grant, and a CFI/BCKDF JELF grant.

4. Ablation

Takeaway: frozen layers prevent overfitting, while MVA provides better generalization.

Table 5: Ablation on the number of layers for accuracy on Objaverse-LVIS using 12 input frames. Default model highlighted in gray.

Method	Top 1	Top 3	Top 5
3 layers	53.77	75.8	82.41
6 layers	55.24	77.08	83.43
12 layers (full)	55.32	77.08	83.49

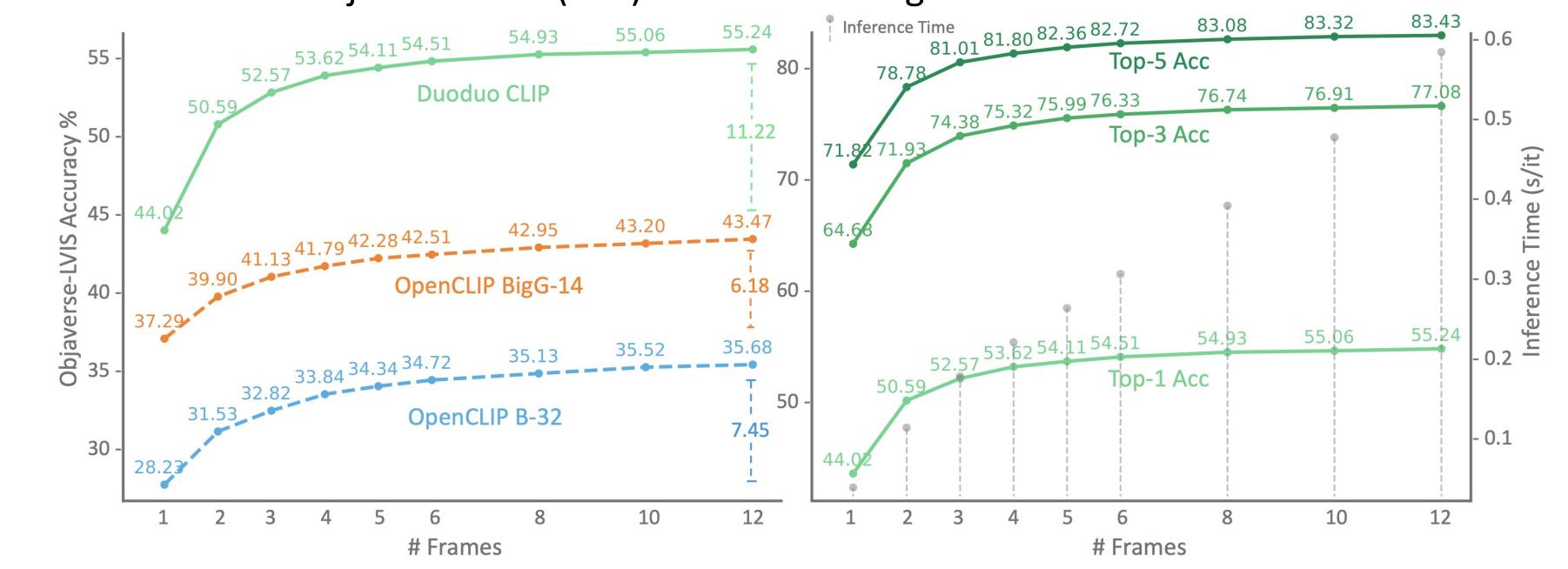
Table 6: Multi-view attention (MVA) ablation of accuracy on Objaverse-LVIS (O-LVIS), MVPNet and ScanObjectNN with 12 frames. Default model highlighted in gray.

NN	ScanObjectl	MVPNet	O-LVIS	Layers	Method
3.77	58	47.87	54.61	6	-MVA
5.32	66	49.16	55.24	6	+MVA
5.83	56	43.75	55.02	12	-MVA
1.15	64	44.42	55.32	12	+MVA

MVA layers learn 3D correspondences.

5. Synthetic Dataset Results

- Dataset: ensemble of 4 synthetic datasets (874k shapes).
- Evaluation: Objaverse LVIS (46k) with 1156 categories.



Better performance scaling with more views

Pretrain Dataset			Ensembled (no LVIS)		Ensembled						
			O-LVIS		O-LVIS			ScanObjectNN			
Method	Rep	Enc	Top1	Top3	Top5	Top1	Top3	Top5	Top1	Top3	Top5
ZS B-32 (12F)	MV	Avg	35.7	54.8	62.1	35.7	54.8	62.1	53.9	73.5	81.2
ZS BigG-14 (12F)	MV	Avg	43.5	64.2	71.3	43.5	64.2	71.3	56.7	78.2	85.8
FT B-32 (12F)	MV	Avg	50.1	72.0	79.2	53.0	74.7	81.4	55.1	75.6	83.9
OpenShape (Liu et al., 2023a)	PC	PointBERT	39.1	60.8	68.9	46.8	69.1	77.0	52.2	79.7	88.7
TAMM (Zhang et al., 2024)	PC	PointBERT	42.0	63.6	71.7	50.7	73.2	80.6	55.7	80.7	88.9
MixCon3D Gao et al. (2024)	PC + MV	PointBERT	47.5	69.0	76.2	52.5	74.5	81.2	58.6	80.3	89.2
Uni3D (Zhou et al., 2024)	PC	3D VIT	47.2	68.8	76.1	55.3	76.7	82.9	65.3	85.5	92.7
ShapeLLM (Qi et al., 2024)	PC	RECON++	_	_		53.7	75.8	82.0	65.4	84.1	89.7
VIT-LENS (Lei et al., 2024)	PC	$VIT ext{-}LENS_G$	50.1	71.3	78.1	52.0	73.3	79.9	60.1	81.0	90.3
Duoduo CLIP (5F)	MV	MVA	51.3	73.1	79.9	54.1	76.0	82.4	60.7	82.4	88.5
Duoduo CLIP (12F)	MV	MVA	52.7	74.5	81.3	55.2	77.1	83.4	66.3	85.5	90.2

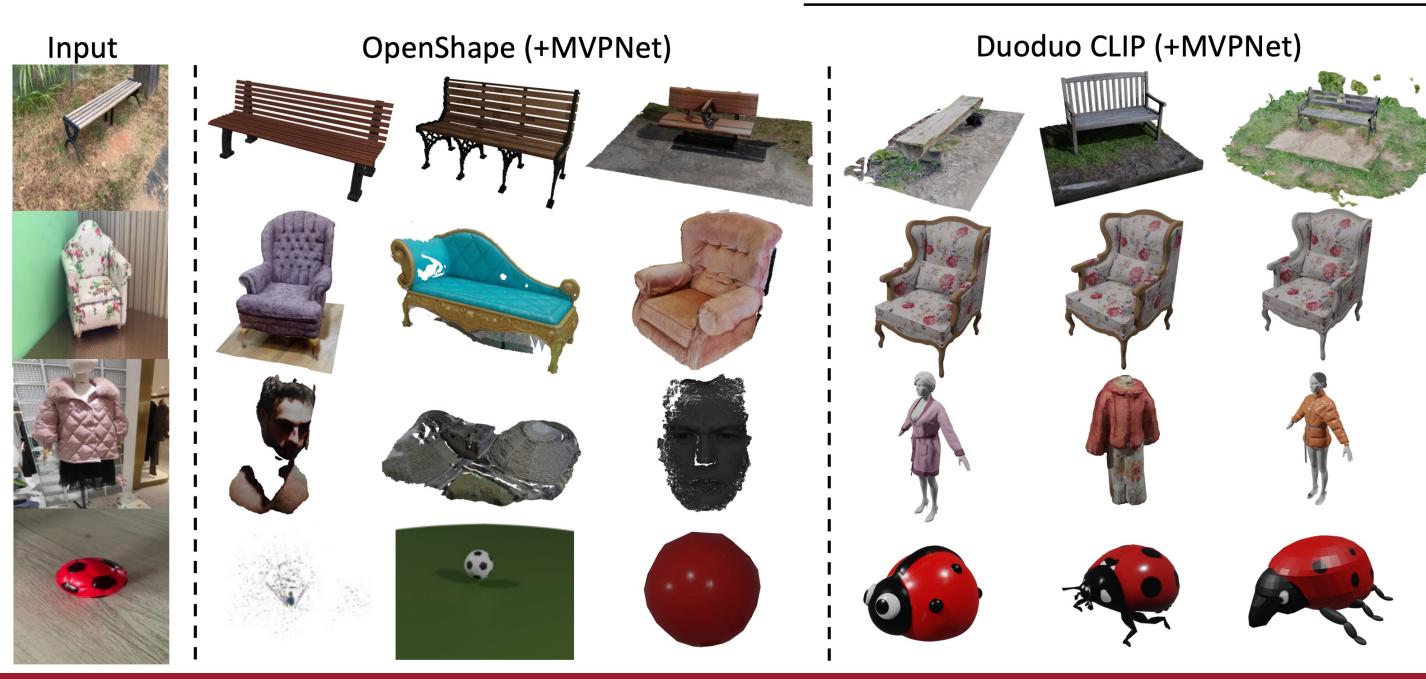
5 views match most methods; 12 views achieves SOTA

6. Real Dataset Results

- **Dataset**: MVImgNet (220k) multiview images of real objects.
- Evaluation: MVPNet (87k) with 180 classes and point clouds.
- Takeaway: strong performance with just 1 view, and scales to data where point cloud isn't available.

		1	
Method	Top 1	Top 3	Top
ZeroShot B-32 (12F)	52.68	70.99	77.2
FT B-32 (12F)	44.43	63.12	70.2
OpenShape† OpenShape† (+MVPNet)	10.80	19.62	25.2
	54.59	72.66	78.6
Ours (12F)	49.16	66.96	74.1
Ours (+MVPNet) (1F) Ours (+MVPNet) (12F)	59.23	76.12	81.7
	64.44	81.11	85.9

Table 3: MVPNet classification comparison.



7. Applications

