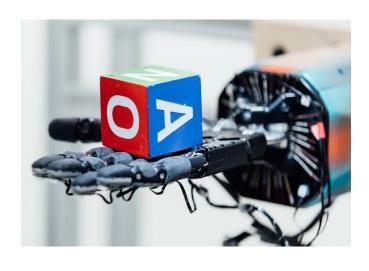
Computationally Efficient RL under Linear Bellman Completeness for Deterministic Dynamics

Runzhe Wu

Cornell University

Joint work with Ayush Sekhari, Akshay Krishnamurthy, and Wen Sun

RL + Rich Function Approximation



(OpenAI, 2018) (Baker et al., 2022)

Can we design provably efficient RL algorithm under

Rich Function Approximation?

Can we design provably efficient RL algorithm under

Linear Function Approximation?

"Linear Bellman Completeness"

Outline

Part I Background

Part II Algorithm: the Trick of Span vs Null Space

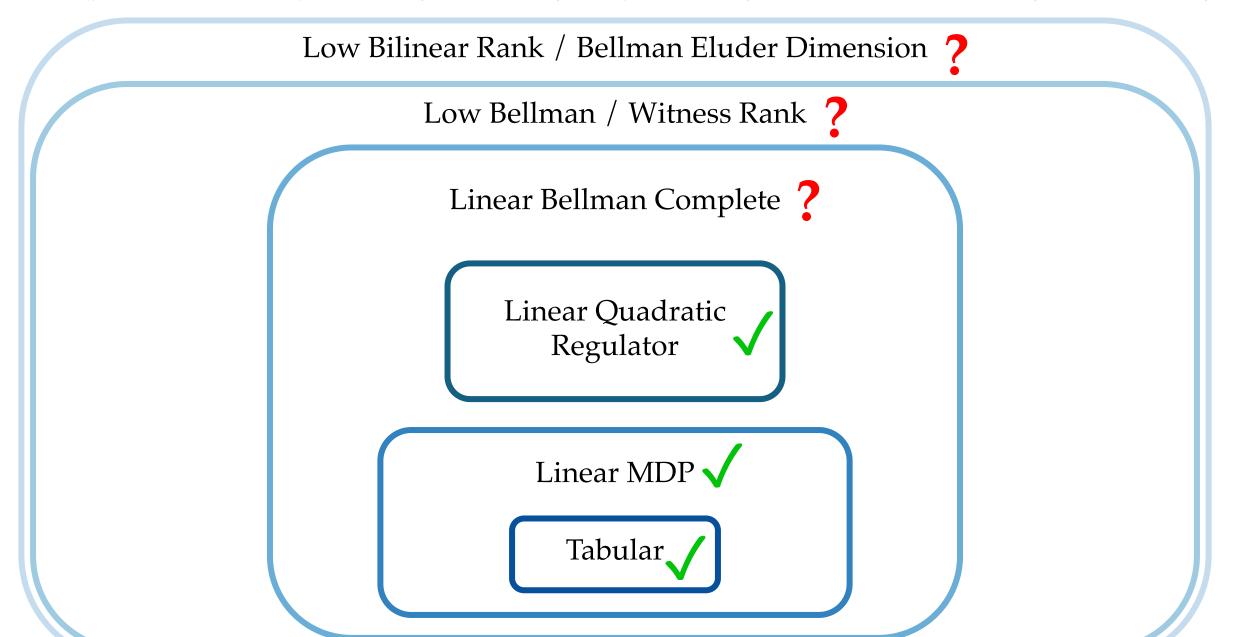
Part III The Norm Issue

Outline

Part I Background

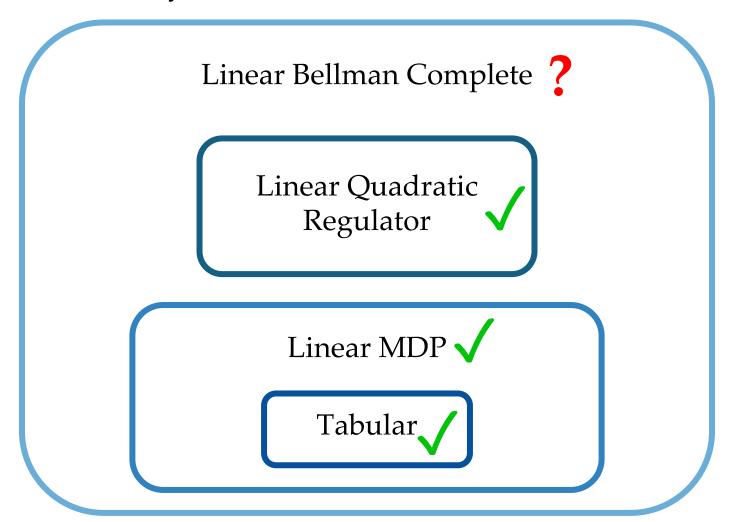
Part II Algorithm: the Trick of Span vs Null Space

Part III The Norm Issue



Open problem: does computationally efficient algorithm exist under linear BC?

Answer: yes, when the transition is deterministic!



We allow...

Adversarial Initial States \checkmark

Random Rewards \checkmark

Large Action Spaces ✓

(Assume known reward for simplicity)

Episodic Finite-Horizon MDP

$$s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \cdots s_{H-1} \xrightarrow{a_{H-1}} s_H \xrightarrow{a_H} r_H$$

$$Q_h^{\pi}(s, a) = \mathbb{E}_{\pi} \left[\sum_{i=h}^{H} r_i \middle| s_h = s, a_h = a \right] \quad V_h^{\pi}(s) = Q(s, \pi(s))$$
$$V_h^{\star}(s) = \max_{\pi} V_h^{\pi}(s)$$

Regret Minimization

$$\operatorname{Reg}_{T} = \mathbb{E}\left[\sum_{t=1}^{T} \left(V_{1}^{\star}(\boldsymbol{s_{1}}) - V_{1}^{\pi_{t}}(\boldsymbol{s_{1}})\right)\right]$$

Linear Bellman Completeness

An MDP is **Bellman complete** w.r.t. a function class $\mathcal{F} \subseteq \mathbb{R}^{\mathcal{S} \times \mathcal{A}}$ if

$$\forall f \in \mathcal{F} : (s, a) \mapsto r(s, a) + \underset{s' \sim P(s, a)}{\mathbb{E}} \max_{a'} f(s', a') \in \mathcal{F}$$

 $=: \mathcal{T}f$ where \mathcal{T} is the **Bellman operator**

In other words,
$$\mathcal{TF}\subseteq\mathcal{F}$$

It is Linear Bellman Complete if ${\mathcal F}$ is linear

$$\mathcal{F} = \left\{ (s,a) \mapsto \left\langle \phi(s,a), \, heta
ight
angle : heta \in \mathbb{R}^d
ight\}$$

Outline

Part I Background

Part II Algorithm: the Trick of *Span* vs *Null Space*

Part III The Norm Issue

RLSVI

Bayes optimal

Key Idea: ξ_h can cancel out estimation error $(\theta_h - \theta_h^*)$ to achieve optimism (w/ constant prob)

RLSVI

Linear Bellman Complete $\mathcal{F} = \left\{ (s,a) \mapsto \left\langle \phi(s,a), \, heta
ight
angle : heta \in \mathbb{R}^d
ight\}$

For
$$t=1,\ldots,T$$

$$\theta_h \leftarrow \arg\min_{(s,a,r,s')\in\mathcal{D}_h} \left(\left\langle \phi(s,a),\,\theta\right\rangle - \frac{r-V_{h+1}(s')}{r-V_{h+1}(s')}\right)^2 + \lambda\|\theta\|_2^2$$

$$\xi_h \sim \mathcal{N}(0,\sigma^2\Sigma_h^{-1}) \text{ where } \Sigma_h = \sum_{(s,a)\in\mathcal{D}_h} \phi(s,a)\phi(s,a)^\top + \lambda I$$
Not linear \mathbf{X}

$$\pi_t \leftarrow \text{greedy policy w.r.t. } Q_h$$

$$\text{Collect data w}/\pi_t$$

Apply to Linear BC?

Non-linear Bayes optimal ⇒ linear regression fails

What if we don't clip?

Observation:
$$\|\xi_h\| \approx \|\theta_h - \theta_h^{\star}\| =: \|\theta_h\| \cdot \epsilon$$

Bayes optimal

KISVI (w/o clipping)

Linear Bellman Complete $\mathcal{F} = \left\{ (s, a) \mapsto \left\langle \phi(s, a), \, \theta \right\rangle : \theta \in \mathbb{R}^d \right\} \, \Big|$ $\mathcal{TF}\subseteq\mathcal{F}$

For
$$t = 1, ..., T$$

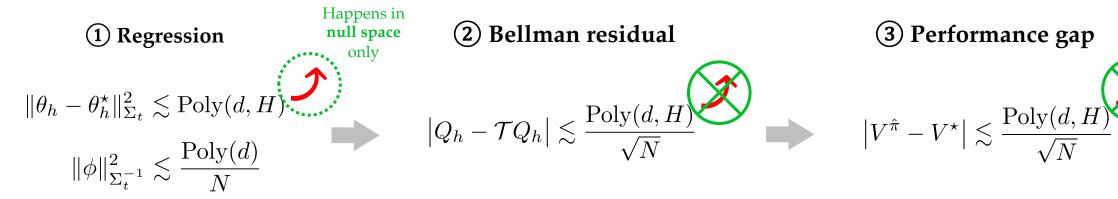
For
$$h = H, \dots, 1$$

$$\begin{vmatrix} \theta_h \leftarrow \arg\min_{(s,a,r,s') \in \mathcal{D}_h} \left(\left\langle \phi(s,a), \theta \right\rangle - r - V_{h+1}(s') \right)^2 + \lambda \|\theta\|_2^2 \\ \xi_h \sim \mathcal{N}(0, \sigma^2 \Sigma_h^{-1}) \text{ where } \Sigma_h = \sum_{(s,a) \in \mathcal{D}_h} \phi(s,a) \phi(s,a)^\top + \lambda I \\ Q_h(\cdot, \cdot) \leftarrow \min\left\{ \left\langle \theta_h + \xi_h, \phi(\cdot, \cdot) \right\rangle, H \right\}, \quad V_h(\cdot) \leftarrow \max_a Q_h(\cdot, a) \\ \pi_t \leftarrow \text{greedy policy w.r.t. } Q_h \\ \text{Collect data w} / \pi_t \end{vmatrix}$$

Collect data w / π_t

$$\forall h \quad \text{Assume} \quad \|\theta_h\| = L \qquad \qquad \|\theta_{h-1}\| \approx (1+\epsilon)L \qquad \qquad \|\theta_{h-1}\| \approx (1+\epsilon)L \qquad \qquad \|\theta_{h-2}\| \approx (1+\epsilon)^2L \qquad \qquad \|\theta_{h-2}\| \approx (1+\epsilon)^3L \qquad \qquad \|\theta_{h-2}\| \approx (1+\epsilon)^3L \qquad \qquad |Q_h| \approx (1+\epsilon)L \qquad \qquad |Q_{h-1}| \approx (1+\epsilon)^2L \qquad \qquad |Q_{h-2}| \approx (1+\epsilon)^3L \qquad \qquad |Q_{h-2}| \approx (1+\epsilon)^3L$$

On exponentially large $\|\theta_h\|$



(2) Bellman residual

$$|Q_h - \mathcal{T}Q_h| \lesssim \frac{\operatorname{Poly}(d, H)}{\sqrt{N}}$$

(3) Performance gap

$$\left|V^{\hat{\pi}} - V^{\star}\right| \lesssim \frac{\operatorname{Poly}(d, H)}{\sqrt{N}}$$

Solution:

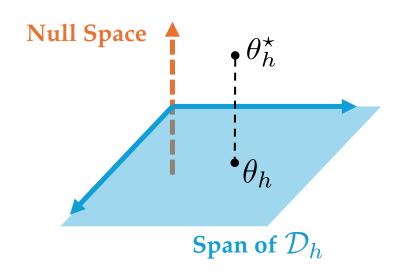
When transition is deterministic, add noise in the null space of data only.

For
$$t = 1, \ldots, T$$

$$\left|\begin{array}{l} \text{For } h = H, \ldots, 1 \\\\ \theta_h \leftarrow \arg\min_{\theta} \sum_{(s,a,r,s') \in \mathcal{D}_h} \left(\left\langle \phi(s,a), \, \theta \right\rangle - r - V_{h+1}(s')\right)^2 \\\\ \xi_h \sim \mathcal{N}(0, \sigma^2 \Sigma_t^{-1}) \text{ where } \Sigma_t = \sum_{(s,a) \in \mathcal{D}_h} \phi(s,a) \phi(s,a)^\top + \lambda I \\\\ Q_h(\cdot, \cdot) \leftarrow \min\left\{\left\langle \theta_h + \xi_h, \, \phi(\cdot, \cdot) \right\rangle, \, H\right\}, \quad V_h(\cdot) \leftarrow \max_a Q_h(\cdot, a) \\\\ \pi_t \leftarrow \text{greedy policy w.r.t. } Q_h \\\\ \text{Collect data w} / \, \pi_t \end{array}\right.$$

$$\theta_h \leftarrow \underset{\theta}{\operatorname{arg\,min}} \sum_{(s,a,r,s') \in \mathcal{D}_h} \left(\left\langle \phi(s,a), \theta \right\rangle - r - V_{h+1}(s') \right)^2 \geqslant 0$$

Deterministic Transition $\Rightarrow V_{h+1}(s')$ is deterministic $\Rightarrow \theta_h$ zeros the empirical risk



 P_h : orthogonal projection matrix onto the span

$$heta_h^{\star} - \theta_h \perp \operatorname{Span} \qquad P_h(\theta_h^{\star} - \theta_h) = 0$$
 $heta_h^{\star} - \theta_h \in \operatorname{Null} \qquad (I - P_h)(\theta_h^{\star} - \theta_h) = \theta_h^{\star} - \theta_h$

For
$$t = 1, ..., T$$

For
$$h = H, \dots, 1$$

For
$$h = H, ..., 1$$

$$\theta_h \leftarrow \underset{(s,a,r,s') \in \mathcal{D}_h}{\operatorname{arg\,min}} \sum_{\substack{(s,a,r,s') \in \mathcal{D}_h}} \left(\left\langle \phi(s,a), \theta \right\rangle - r - V_{h+1}(s') \right)^2$$

$$\xi_h \sim \mathcal{N}(0, \sigma^2 \Sigma_t^{-1}) \text{ where } \Sigma_t = \sum_{(s,a) \in \mathcal{D}_h} \phi(s,a) \phi(s,a)^\top + \lambda I \quad \text{No need to explore in the span}$$

$$\xi_h \sim \mathcal{N}(0, \sigma^2 \Sigma_t^{-1}) \text{ where } \Sigma_t = \sum_{(s,a) \in \mathcal{D}_h} \phi(s,a) \phi(s,a)^\top + \lambda I$$

$$(s,a) \in \mathcal{D}_h$$

$$Q_h(\cdot,\cdot) \leftarrow \left\langle \theta_h + \xi_h, \, \phi(\cdot,\cdot) \right\rangle, \quad V_h(\cdot) \leftarrow \max_a Q_h(\cdot,a)$$

$$\pi_t \leftarrow \text{greedy policy w.r.t. } Q_h$$

$$\text{Collect data w} / \pi_t$$

Collect data w/ π_t

For
$$t = 1, ..., T$$

For
$$h = H, \dots, 1$$

For
$$t = 1, ..., T$$

$$\begin{vmatrix} \theta_h \leftarrow \arg\min_{(s,a,r,s') \in \mathcal{D}_h} \left(\langle \phi(s,a), \theta \rangle - r - V_{h+1}(s') \right)^2 \\ \xi_h \sim \mathcal{N}(0, \sigma^2 \Sigma_t^{-1}) \text{ where } \Sigma_t = \sum_{(s,a) \in \mathcal{D}_h} \phi(s,a) \phi(s,a)^\top + \lambda I \\ \widetilde{\xi}_h \leftarrow (I - P_h) \xi_h \\ Q_h(\cdot, \cdot) \leftarrow \left\langle \theta_h + \widetilde{\xi}_h, \phi(\cdot, \cdot) \right\rangle, \quad V_h(\cdot) \leftarrow \max_a Q_h(\cdot, a) \\ \pi_t \leftarrow \text{greedy policy w.r.t. } Q_h \\ \text{Collect data w} / \pi_t \end{vmatrix}$$

$$\xi_h \sim \mathcal{N}(0, \sigma^2 \Sigma_t^{-1}) \text{ where } \Sigma_t = \sum_{(s,a) \in \mathcal{D}_h} \phi(s,a) \phi(s,a)^\top + \lambda I$$

$$\widetilde{\xi}_h \leftarrow (I - P_h)\xi_h$$

$$Q_h(\cdot,\cdot) \leftarrow \langle \theta_h + \widetilde{\xi}_h, \phi(\cdot,\cdot) \rangle, \quad V_h(\cdot) \leftarrow \max_a Q_h(\cdot,a)$$

Only explore in the **null space**

! Caveat: Setting σ is challenging (covered in next section).

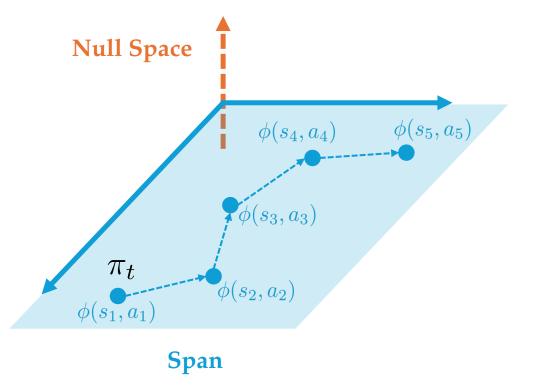
For now, assume we know how to set it.

Fix round t

Span Argument

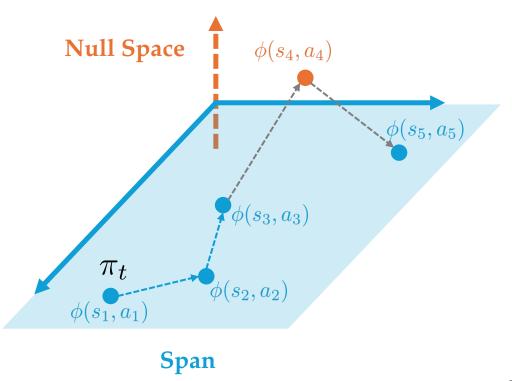
(1) All in Span

 $\forall h : \phi(s_h, a_h) \in \operatorname{Span}$



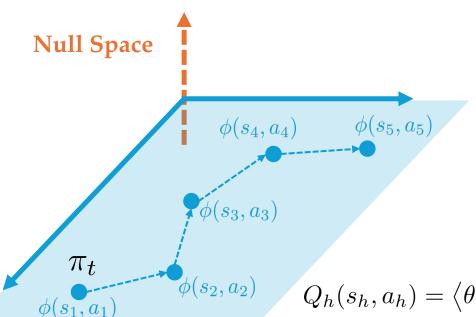
(2) Some in Null Space

 $\exists h : \phi(s_h, a_h) \not\in \operatorname{Span}$



(1) All in Span

 $\forall h: \phi(s_h, a_h) \in \operatorname{Span}$



Algorithm

For
$$t = 1, ..., T$$

For
$$h = H, \dots, 1$$

$$\theta_h \leftarrow \underset{\theta}{\operatorname{arg\,min}} \sum_{(s,a,r,s')\in\mathcal{D}_h} \left(\left\langle \phi(s,a), \theta \right\rangle - r - V_{h+1}(s') \right)^2$$

$$|\widetilde{\xi}_h \sim \mathcal{N}(0, \sigma^2(I - P_h))|$$

$$Q_h(\cdot,\cdot) \leftarrow \langle \theta_h + \widetilde{\xi}_h, \phi(\cdot,\cdot) \rangle, \quad V_h(\cdot) \leftarrow \max_a Q_h(\cdot,a)$$

 $\pi_t \leftarrow$ greedy policy w.r.t. Q_h

Collect data w / π_t

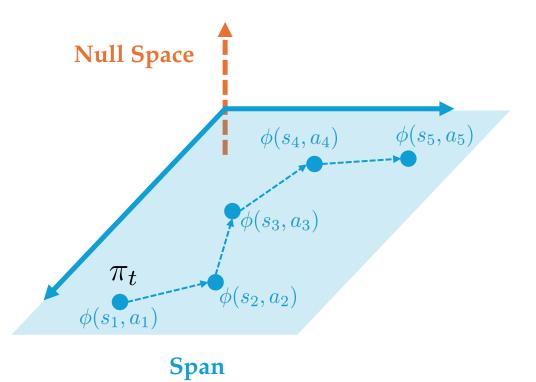
$$Q_h(s_h, a_h) = \left\langle \theta_h + \widetilde{\xi}_h, \, \phi(s_h, a_h) \right\rangle = \left\langle \theta_h, \, \phi(s_h, a_h) \right\rangle = \left\langle \theta_h^{\star}, \, \phi(s_h, a_h) \right\rangle = Q_h^{\pi_t}(s_h, a_h)$$

Span

$$\Rightarrow \forall h: Q_h(s_h, a_h) = Q_h^{\pi_t}(s_h, a_h), \quad V_h(s_h) = V_h^{\pi_t}(s_h)$$

(1) All in Span

 $\forall h : \phi(s_h, a_h) \in \operatorname{Span}$



$$V_1(s_1) = V_1^{\pi_t}(s_1)$$

$$V_1(s_1) > V_1^{\star}(s_1)$$

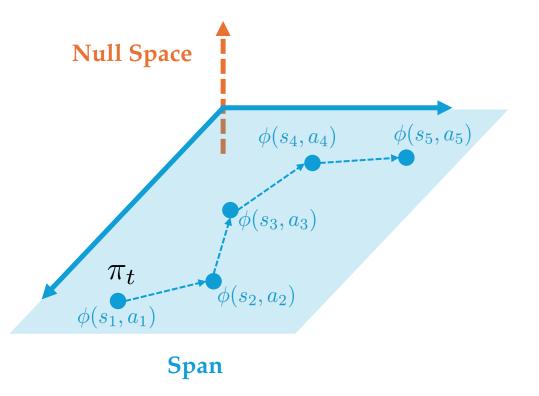
(optimism holds with constant probability)

Then,
$$V^*(s_1) - V^{\pi_t}(s_1)$$

 $\leq V_1(s_1) - V^{\pi_t}(s_1)$
 $= V_1(s_1) - V_1(s_1)$
 $= 0$

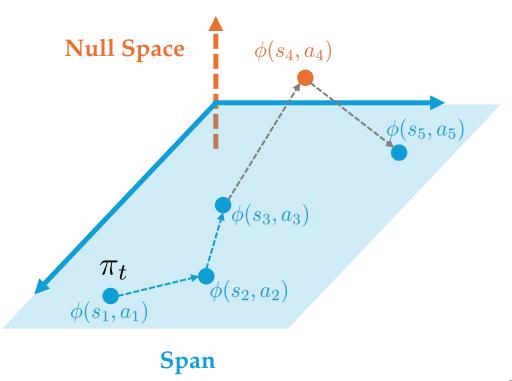
(1) All in Span

 $\forall h : \phi(s_h, a_h) \in \operatorname{Span}$



(2) Some in Null Space

 $\exists h : \phi(s_h, a_h) \not\in \operatorname{Span}$



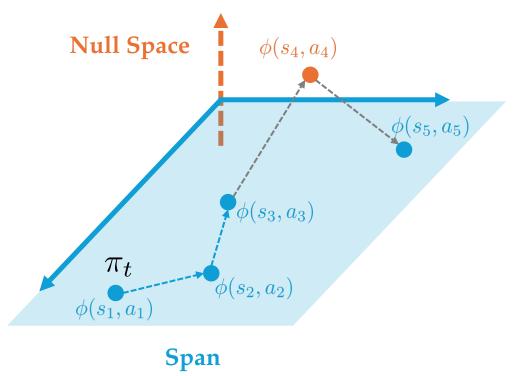
Next round, $\dim(\operatorname{Span})$ increases by 1

But $\forall h : \dim(\operatorname{Span}) \leq d$

Can happen at most dH times

(2) Some in Null Space

 $\exists h : \phi(s_h, a_h) \not\in \operatorname{Span}$



(1) All in Span

$$\operatorname{Reg}_T = 0^*$$

(2) Some in Null Space

$$\operatorname{Reg}_T \le dH \cdot H$$

Theorem. If reward is known, we have

$$\operatorname{Reg}_T \leq dH^2$$

Theorem. If reward is unknown, we have

$$\operatorname{Reg}_{T} \le \widetilde{O}\left(d^{5/2}H^{5/2} + d^{2}H^{3/2}\sqrt{T}\right)$$

We are not done yet

 \triangle Caveat: Setting σ is challenging (the norm issue)

Outline

Part I Background

Part II Algorithm: the Trick of Span vs Null Space

Part III The Norm Issue

The Norm Issue

Algorithm (w/ known reward)

For
$$t = 1, ..., T$$

For
$$h = H, \dots, 1$$

$$\begin{vmatrix} \theta_h \leftarrow \arg\min_{(s,a,r,s') \in \mathcal{D}_h} \sum_{(s,a,r,s') \in \mathcal{D}_h} \left(\langle \phi(s,a), \theta \rangle - r - V_{h+1}(s') \right)^2 \\ \widetilde{\xi}_h \sim \mathcal{N}(0, \sigma_h^2(I - P_h)) \\ Q_h(\cdot, \cdot) \leftarrow \langle \theta_h + \widetilde{\xi}_h, \phi(\cdot, \cdot) \rangle, \quad V_h(\cdot) \leftarrow \max_a Q_h(\cdot, a)$$

$$\widetilde{\xi}_h \sim \mathcal{N}(0, \sigma_h^2(I - P_h))$$

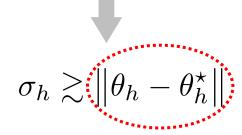
$$Q_h(\cdot,\cdot) \leftarrow \langle \theta_h + \tilde{\xi}_h, \phi(\cdot,\cdot) \rangle, \quad V_h(\cdot) \leftarrow \max_a Q_h(\cdot,a)$$

 $\pi_t \leftarrow$ greedy policy w.r.t. Q_h

Collect data w/ π_t

We should have

$$\left|\widetilde{\xi_h}\right| \gtrsim \left|\theta_h - \theta_h^\star\right|$$



How large can it be?

The Norm Issue

Algorithm (w/ known reward)

For
$$t = 1, ..., T$$

For
$$h = H, \dots, 1$$

$$\theta_h \leftarrow \underset{\theta}{\operatorname{arg\,min}} \sum_{(s,a,r,s') \in \mathcal{D}_h} \left(\left\langle \phi(s,a), \theta \right\rangle - r - V_{h+1}(s') \right)^2$$

$$\widetilde{\xi}_h \sim \mathcal{N}(0, \sigma_h^2 (I - P_h))$$

$$\left| \frac{\widetilde{\boldsymbol{\xi}}_{h}}{\boldsymbol{\xi}_{h}} \sim \mathcal{N}(0, \sigma_{h}^{2}(\boldsymbol{I} - \boldsymbol{P}_{h})) \right|$$

$$Q_{h}(\cdot, \cdot) \leftarrow \left\langle \theta_{h} + \widetilde{\boldsymbol{\xi}}_{h}, \phi(\cdot, \cdot) \right\rangle, \quad V_{h}(\cdot) \leftarrow \max_{a} Q_{h}(\cdot, a)$$

 $\pi_t \leftarrow$ greedy policy w.r.t. Q_h

Collect data w/ π_t

Linear Bellman Complete

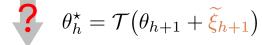
$$\mathcal{F} = \left\{ (s,a) \mapsto \left\langle \phi(s,a), \, heta
ight
angle : heta \in \mathbb{R}^d
ight\} \qquad \mathcal{T} \mathcal{F} \subseteq \mathcal{F}$$

Assume

$$\|\theta_{h+1}\| \le L \quad \|\theta_{h+1}^{\star}\| \le L$$

$$\|\widetilde{\xi}_{h+1}\| \approx \|\theta_{h+1} - \theta_{h+1}^{\star}\| \le 2L$$

$$\|\theta_{h+1} + \widetilde{\xi}_{h+1}\| \lesssim 3L$$



$$\|\theta_h^{\star}\| \lesssim ?? \|\theta_h - \theta_h^{\star}\| \lesssim ??$$

Don't know how to set σ_h

The Norm Issue

Algorithm (w/ known reward)

For
$$t = 1, ..., T$$

For
$$h = H, \dots, 1$$

$$\begin{vmatrix} \theta_h \leftarrow \arg\min_{(s,a,r,s') \in \mathcal{D}_h} \left(\langle \phi(s,a), \theta \rangle - r - V_{h+1}(s') \right)^2 \\ \widetilde{\xi}_h \sim \mathcal{N}(0, \sigma_h^2(I - P_h)) \\ Q_h(\cdot, \cdot) \leftarrow \langle \theta_h + \widetilde{\xi}_h, \phi(\cdot, \cdot) \rangle, \quad V_h(\cdot) \leftarrow \max_a Q_h(\cdot, a) \end{vmatrix}$$

$$\widetilde{\xi}_h \sim \mathcal{N}(0, \sigma_h^2 (I - P_h))$$

$$Q_h(\cdot,\cdot) \leftarrow \langle \theta_h + \overline{\xi}_h, \phi(\cdot,\cdot) \rangle, \quad V_h(\cdot) \leftarrow \max_a Q_h(\cdot,a)$$

 $\pi_t \leftarrow$ greedy policy w.r.t. Q_h

Collect data w/ π_t

Linear Bellman Complete

$$\mathcal{F} = \left\{ (s,a) \mapsto \left\langle \phi(s,a),\, heta
ight
angle : heta \in \mathbb{R}^d
ight\} \qquad \mathcal{T} \mathcal{F} \subseteq \mathcal{F}$$

Linear BC allows arbitrary norm explosion.

We won't know how to set σ_h

An MDP is Linear Bellman Complete if

$$\forall f = \langle \phi, \theta \rangle, \quad \exists \tilde{f} = \langle \phi, \tilde{\theta} \rangle \quad \text{s.t.} \quad \tilde{f} = \mathcal{T}f$$

Prior Works

(1) Assume $\|\tilde{\theta}\|_2 \le R$ (R: pre-fixed)

Looks not so natural...

(2) Assume $\|\tilde{\theta}\|_2 \leq \|\theta\|_2$

Not true in tabular MDPs

An MDP is Linear Bellman Complete if

$$\forall f = \langle \phi, \theta \rangle, \quad \exists \tilde{f} = \langle \phi, \tilde{\theta} \rangle \quad \text{s.t.} \quad \tilde{f} = \mathcal{T}f$$

Our Observation

$$\max_{s,a} \left\langle \phi(s,a), \, \tilde{\theta} \right\rangle = \max_{s,a} \left(r(s,a) + \underset{s' \sim P(s,a)}{\mathbb{E}} \max_{a'} \left\langle \phi(s',a'), \, \theta \right\rangle \right) \leq 1 + \underbrace{\max_{s,a} \left\langle \phi(s,a), \, \theta \right\rangle}_{s,a}$$

$$=: \|\tilde{\theta}\|_{\infty}^{\phi} \quad \text{``ℓ_{∞}-functional-norm''}$$

$$=: \|\theta\|_{\infty}^{\phi}$$

Linear BC controls ℓ_{∞} -functional-norm!

It is not an assumption; it is a conclusion.

A Second Visit to Norm

Algorithm (w/known reward)

For
$$t = 1, ..., T$$

For
$$h = H, \dots, 1$$

$$\begin{vmatrix} \theta_h \leftarrow \arg\min_{(s,a,r,s') \in \mathcal{D}_h} \left(\langle \phi(s,a), \theta \rangle - r - V_{h+1}(s') \right)^2 \\ \widetilde{\xi}_h \sim \mathcal{N}(0, \sigma_h^2(I - P_h)) \\ Q_h(\cdot, \cdot) \leftarrow \left\langle \theta_h + \widetilde{\xi}_h, \phi(\cdot, \cdot) \right\rangle, \quad V_h(\cdot) \leftarrow \max_a Q_h(\cdot, a) \end{vmatrix}$$

$$\widetilde{\xi}_h \sim \mathcal{N}(0, \sigma_h^2 (I - P_h))$$

$$Q_h(\cdot,\cdot) \leftarrow \langle \theta_h + \overline{\xi_h}, \phi(\cdot,\cdot) \rangle, \quad V_h(\cdot) \leftarrow \max_a Q_h(\cdot,a)$$

 $\pi_t \leftarrow$ greedy policy w.r.t. Q_h

Collect data w/ π_t

Assume

$$\|\theta_{h+1}\|_{\infty}^{\phi} \le L \quad \|\theta_{h+1}^{\star}\|_{\infty}^{\phi} \le L$$

$$\|\widetilde{\boldsymbol{\xi}}_{h+1}\|_{\infty}^{\phi} \approx \|\boldsymbol{\theta}_{h+1} - \boldsymbol{\theta}_{h+1}^{\star}\|_{\infty}^{\phi} \leq 2L$$

$$\|\theta_{h+1} + \widetilde{\xi}_{h+1}\|_{\infty}^{\phi} \lesssim 3L$$

(was stuck here) $\theta_h^{\star} = \mathcal{T}(\theta_{h+1} + \widetilde{\xi}_{h+1})$

$$\|\theta_h^\star\|_\infty^\phi \lesssim 3L + 1$$

How about $\|\theta_h\|_{\infty}^{\phi}$?

A Second Visit to Norm

Algorithm (w/ known reward)

For
$$t = 1, ..., T$$

For
$$h = H, \dots, 1$$

$$\begin{vmatrix} \theta_{h} \leftarrow \underset{\theta:\|\theta\|_{\infty}^{\phi} \leq \|\theta^{\star}\|_{\infty}^{\phi}}{\arg \min} \sum_{\substack{(s,a,r,s') \in \mathcal{D}_{h} \\ \widetilde{\xi}_{h}}} \left(\left\langle \phi(s,a), \theta \right\rangle - r - V_{h+1}(s') \right)^{2} \|\widetilde{\xi}_{h+1}\|_{\infty}^{\phi} \approx \|\theta_{h+1} - \theta_{h+1}^{\star}\|_{\infty}^{\phi} \leq 2L \\ Q_{h}(\cdot,\cdot) \leftarrow \left\langle \theta_{h} + \widetilde{\xi}_{h}, \phi(\cdot,\cdot) \right\rangle, \quad V_{h}(\cdot) \leftarrow \underset{a}{\max} Q_{h}(\cdot,a)$$

$$\|\theta_{h+1} + \widetilde{\xi}_{h+1}\|_{\infty}^{\phi} \lesssim 3L$$

$$\widetilde{\xi}_h \sim \mathcal{N}(0, \sigma_h^2(I - P_h))$$

$$Q_h(\cdot,\cdot) \leftarrow \langle \theta_h + \widetilde{\xi}_h, \phi(\cdot,\cdot) \rangle, \quad V_h(\cdot) \leftarrow \max_{a} Q_h(\cdot,a)$$

 $\pi_t \leftarrow$ greedy policy w.r.t. Q_h

Collect data w/ π_t

$$\|\theta_h^{\star} - \theta_h\|_{\infty}^{\phi} \lesssim 6L + 2$$

Set
$$\sigma_h \gtrsim 6L + 2\sqrt{}$$

Assume

$$\|\theta_{h+1}\|_{\infty}^{\phi} \leq L \|\theta_{h+1}^{\star}\|_{\infty}^{\phi} \leq L$$

$$\|\widetilde{\xi}_{h+1}\|_{\infty}^{\phi} \approx \|\theta_{h+1} - \theta_{h+1}^{\star}\|_{\infty}^{\phi} \leq 2L$$

$$\|\theta_{h+1} + \widetilde{\xi}_{h+1}\|_{\infty}^{\phi} \lesssim 3L$$

(was stuck here)
$$\theta_h^\star = \mathcal{T} \big(\theta_{h+1} + \widetilde{\xi}_{h+1} \big)$$

$$\| heta_h^\star\|_\infty^\phi \lesssim 3L+1$$

Enforce
$$\|\theta_h\|_{\infty}^{\phi} \lesssim 3L + 1$$

Constrained Squared Loss Regression

$$\theta_h \leftarrow \underset{\theta: \|\theta\|_{\infty}^{\phi} \leq \|\theta^{\star}\|_{\infty}^{\phi}}{\operatorname{arg\,min}} \sum_{(s, a, r, s') \in \mathcal{D}_h} \left(\left\langle \phi(s, a), \theta \right\rangle - r - V_{h+1}(s') \right)^2$$

In general, need to solve...

$$\theta \leftarrow \arg\min_{(x,y) \in \mathcal{D}} \left(\left\langle x, \, \theta \right\rangle - y \right)^2 \quad \text{s.t.} \quad \max_{s,a} \left| \left\langle \phi(s,a), \, \theta \right\rangle \right| \leq W$$
 Squared loss regression
$$\ell_{\infty}\text{-functional constraints} \quad (\text{exponential } W)$$

Random Walks (Bertsimas & Vempala, 2004) ✓ needs a linear optimization oracle:

$$\max_{\phi(s,a)} \langle \phi(s,a), \theta \rangle$$

Outline

Part I Background

Part II Algorithm: the Trick of Span vs Null Space

Part III The Norm Issue

Takeaways

An efficient RL algorithm under deterministic transition.

Key Ideas:

- (1) Span vs Null Space
- (2) ℓ_{∞} -functional-norm instead of ℓ_2 -norm

Future Work

1. Extending the "*Span* vs *Null Space*" technique to broader settings

2. Low-variance stochastic transitions

3. Can we ultimately resolve the linear BC problem?

Thank you! Any Questions?