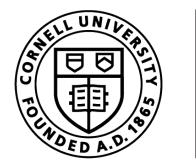
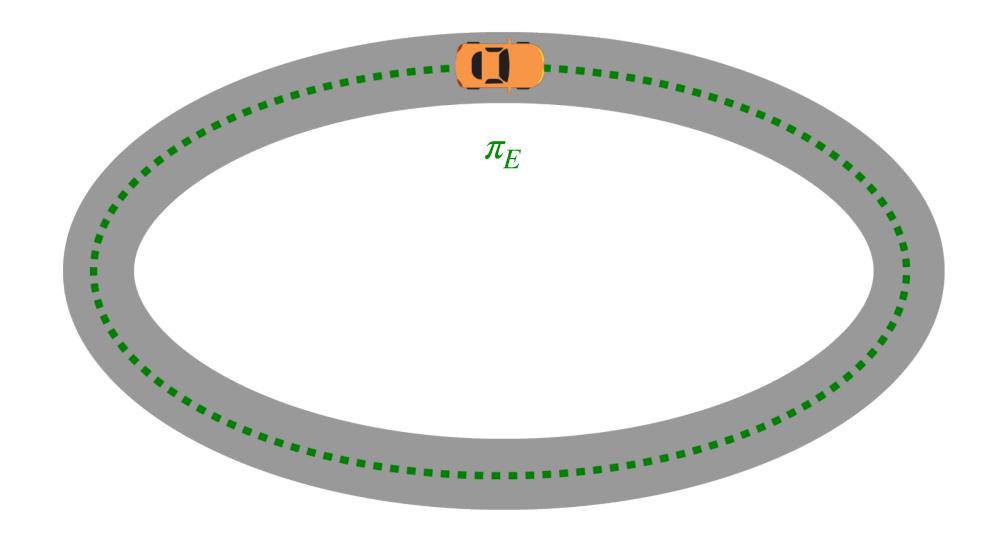
Efficient Imitation Under Misspecification

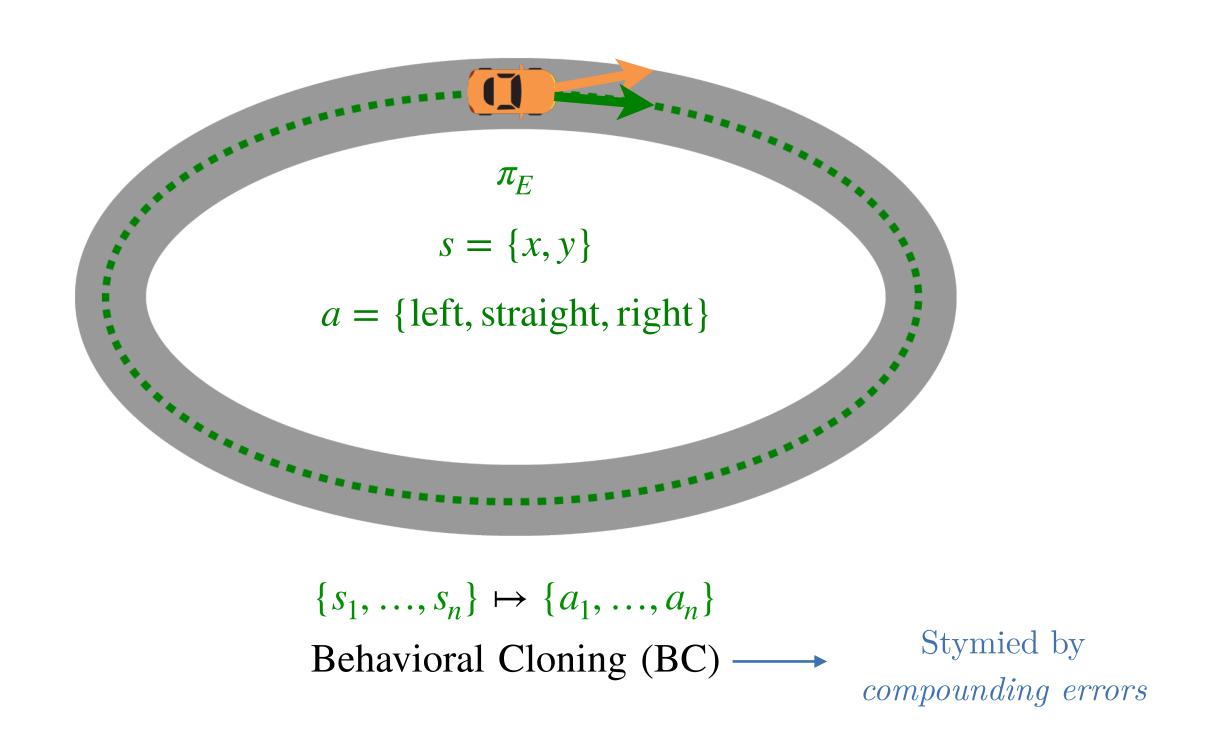
Nicolas Espinosa Dice

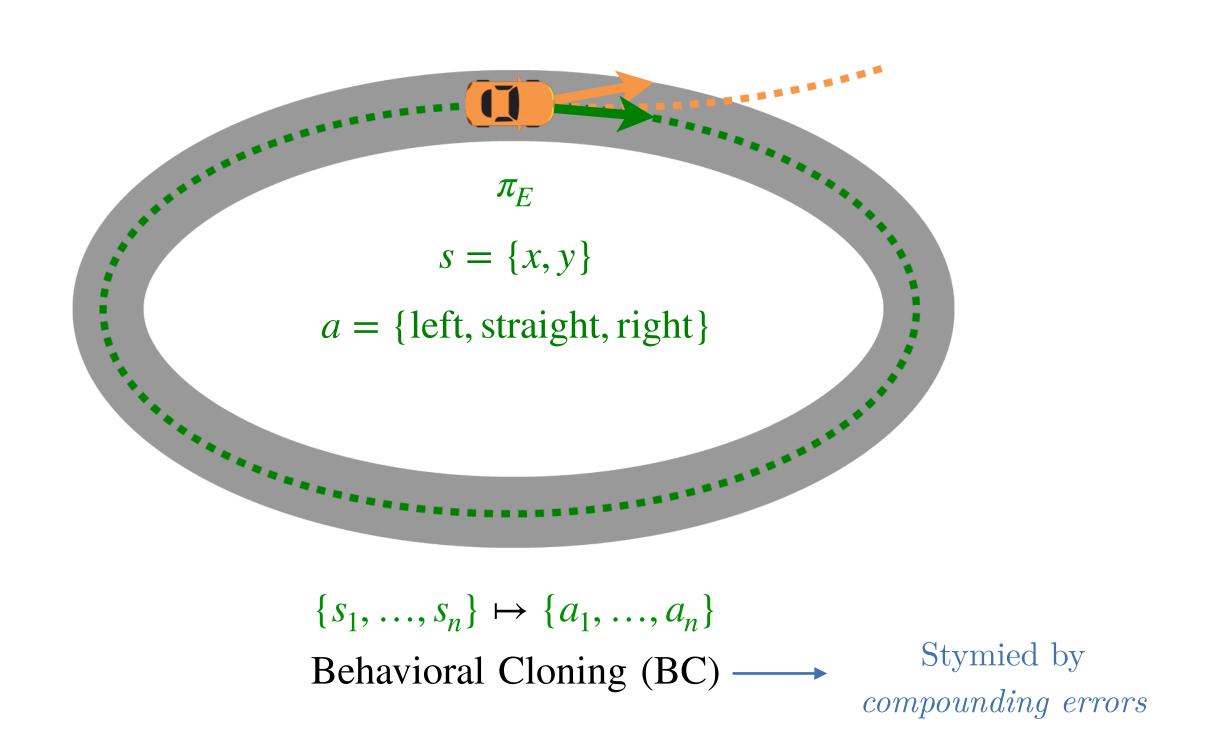
Joint work with Sanjiban Choudhury, Wen Sun, and Gokul Swamy

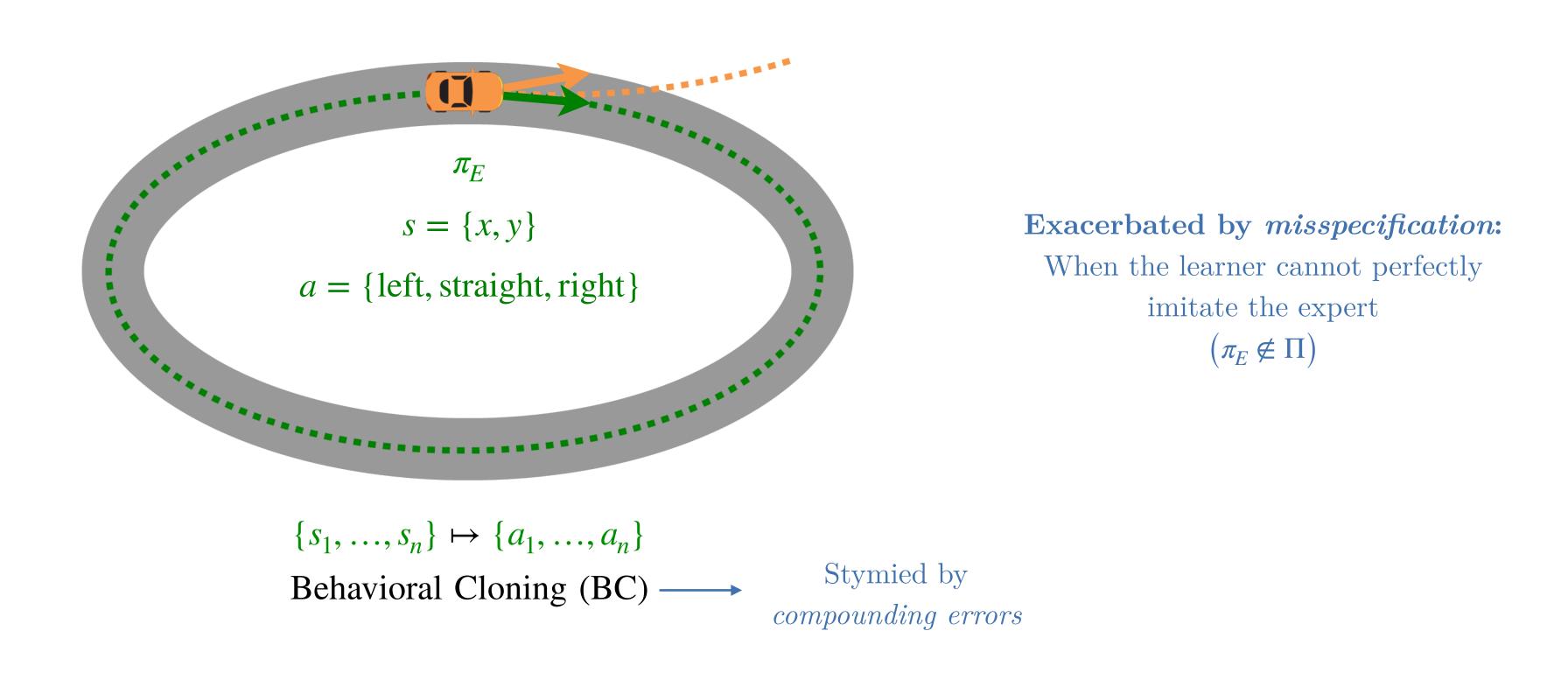


Cornell Bowers C·IS
College of Computing and Information Science

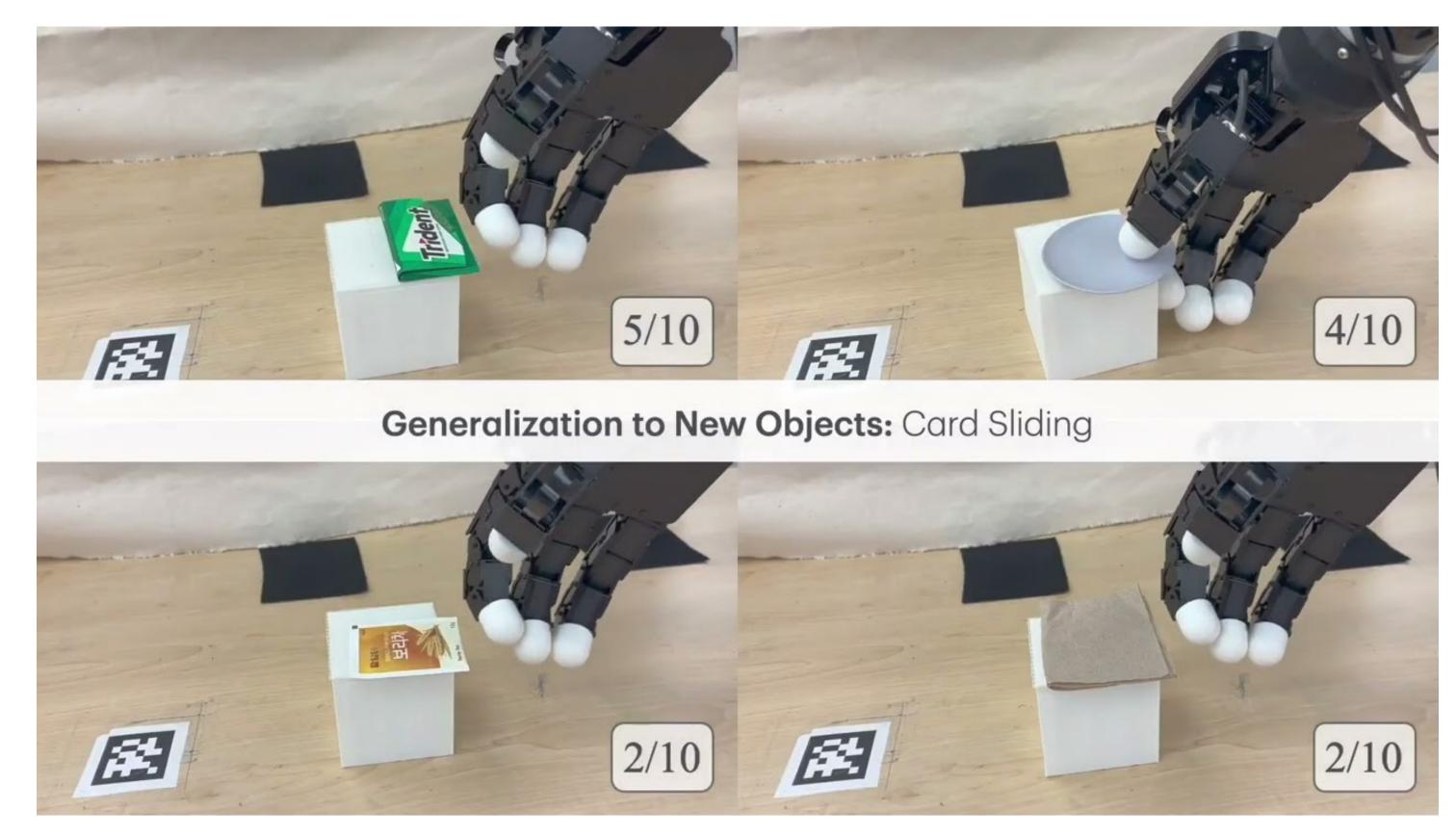








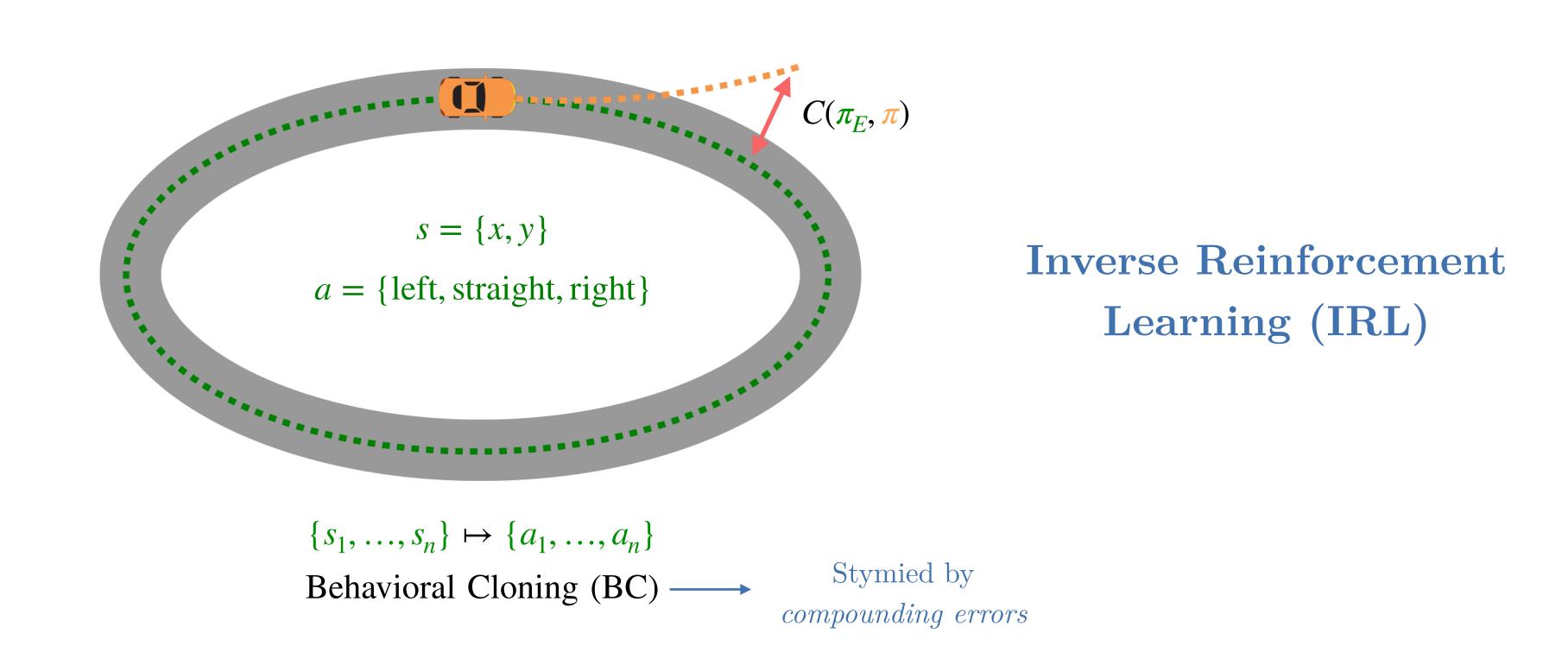
In practice, misspecification is common

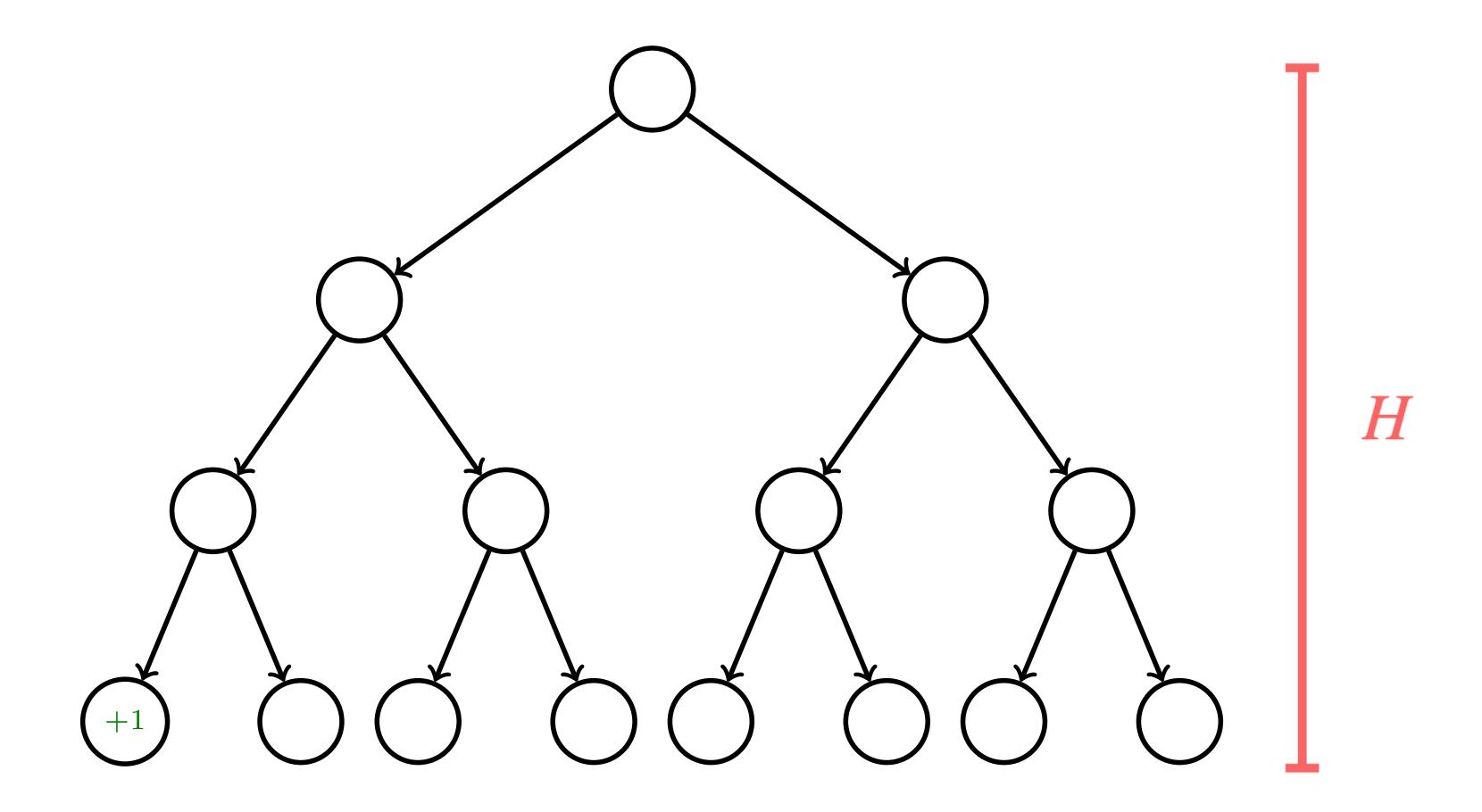


Embodiment mismatch

(Guzey et al., 2024)

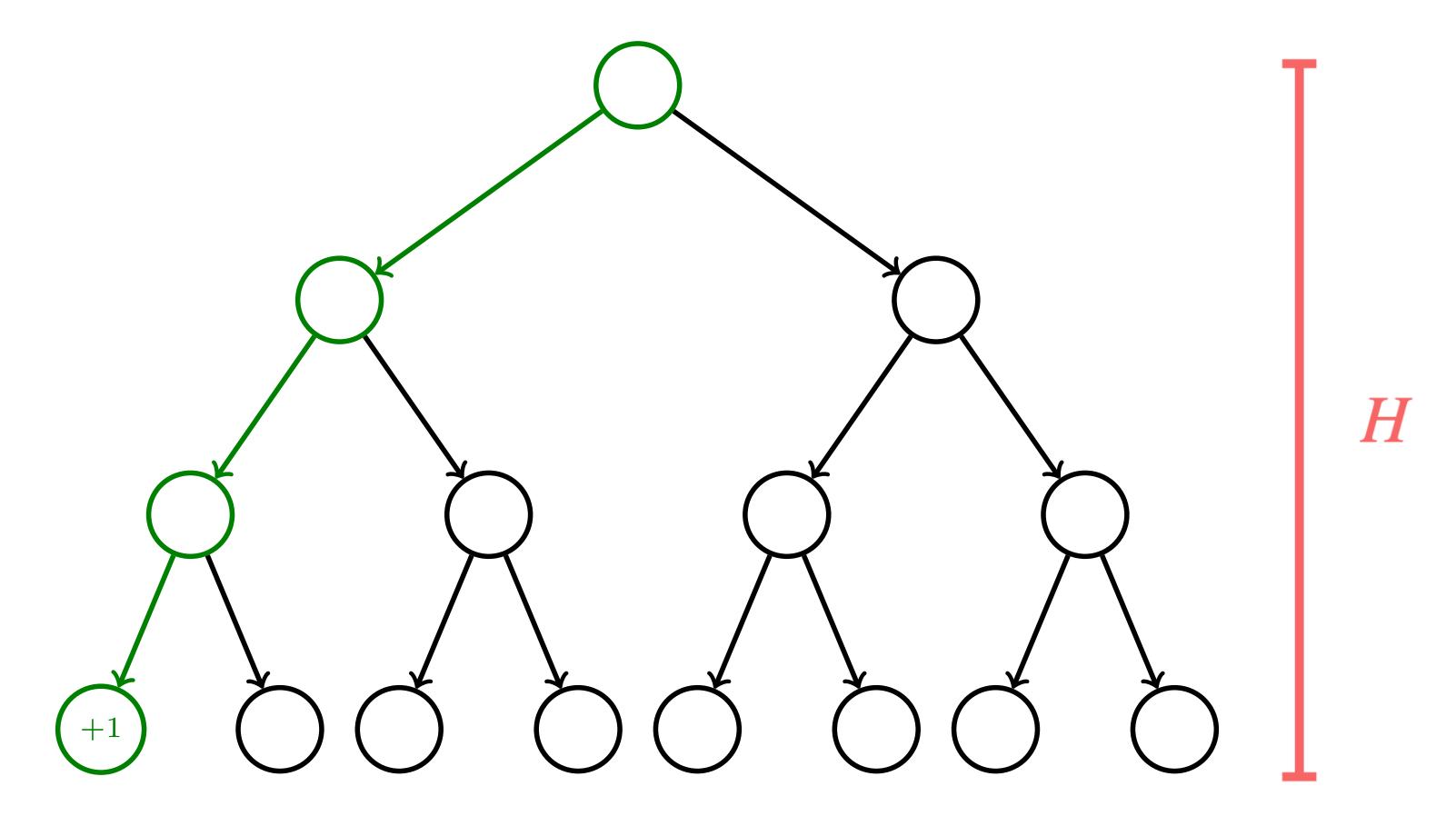
How do we learn to recover from mistakes?





Challenge: IRL is computationally inefficient

Solution: Local search is sufficient in well-specified setting $(\pi_E \in \Pi)$



(Swamy et al. 2023)

Local search is sufficient for learning to recover from mistakes

in the misspecified setting

Local search is sufficient for learning to recover from mistakes
in the misspecified setting

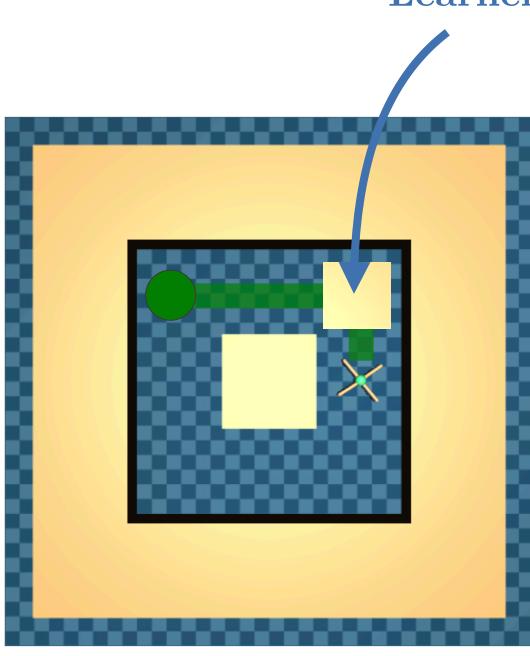
We generalize policy completeness to the IL setting

(1) Reward-agnostic policy completeness

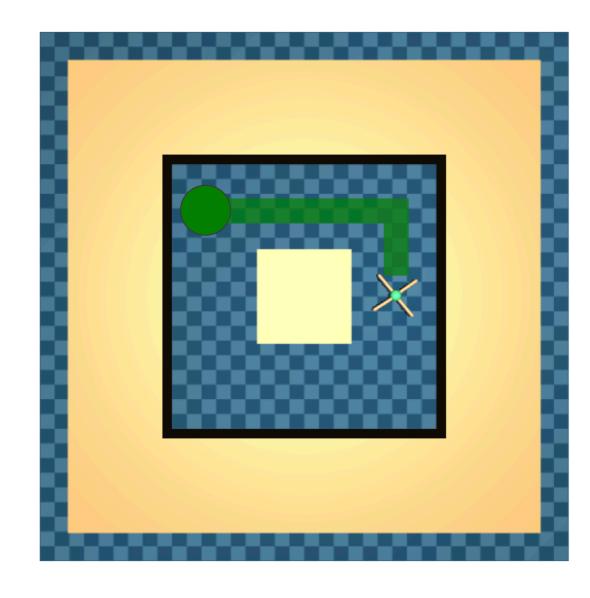
Theorem 1 (Informal): Under (1), efficient IRL avoids compounding errors in misspecified settings

We analyze where local search should be performed

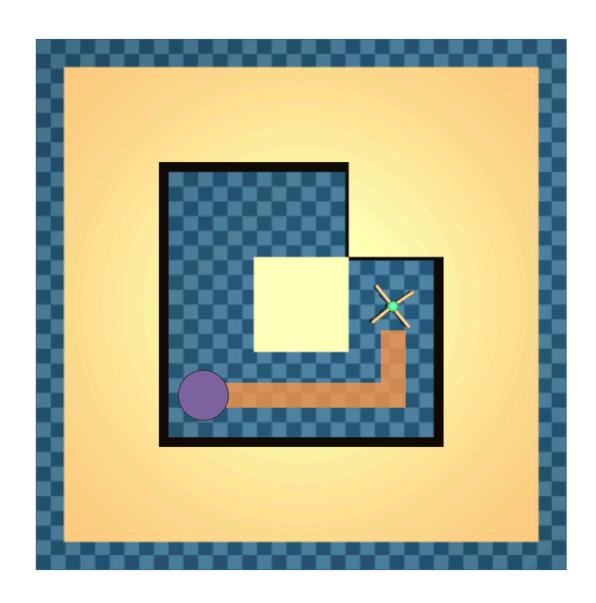
Learner's path is blocked



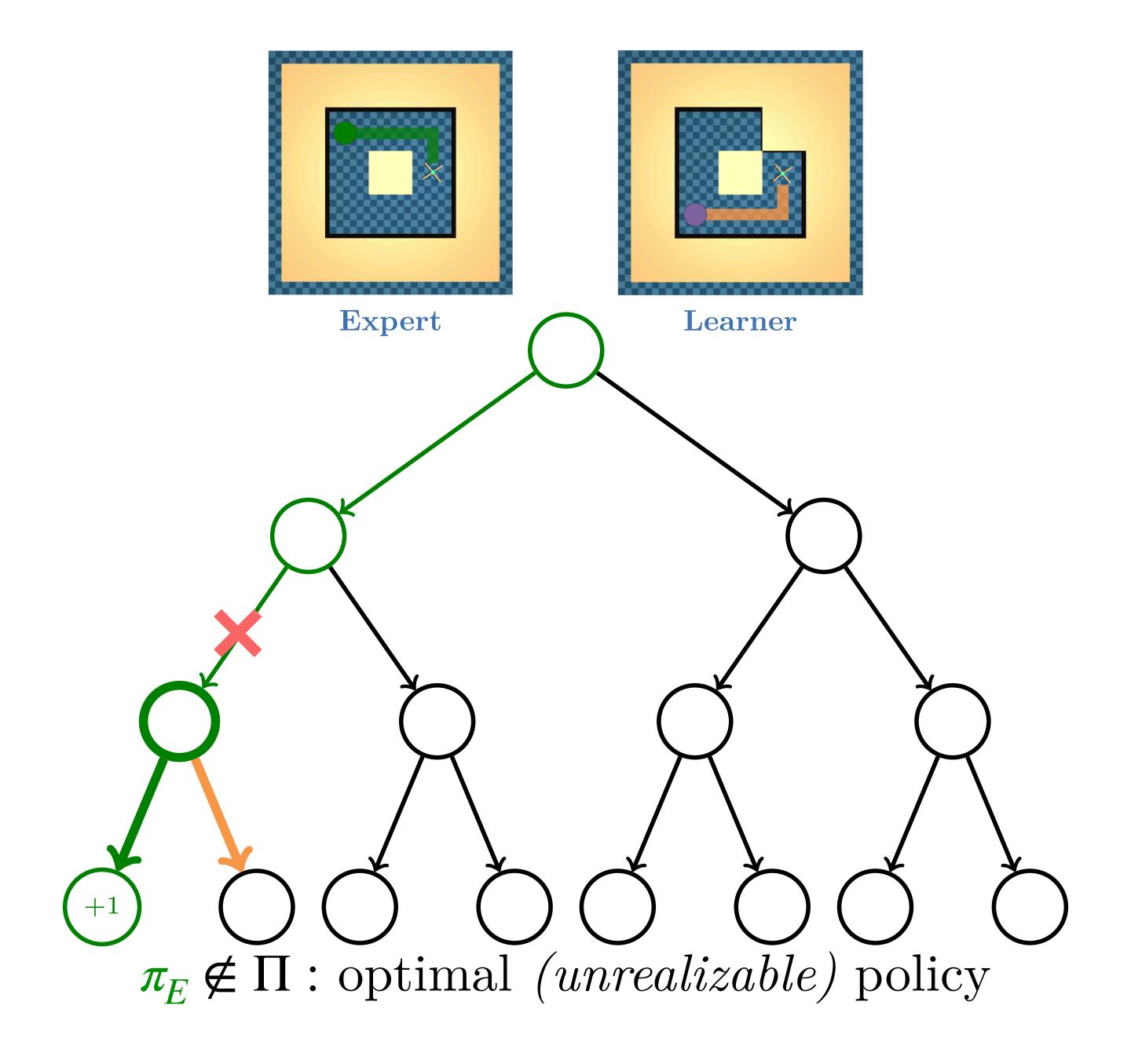
Expert

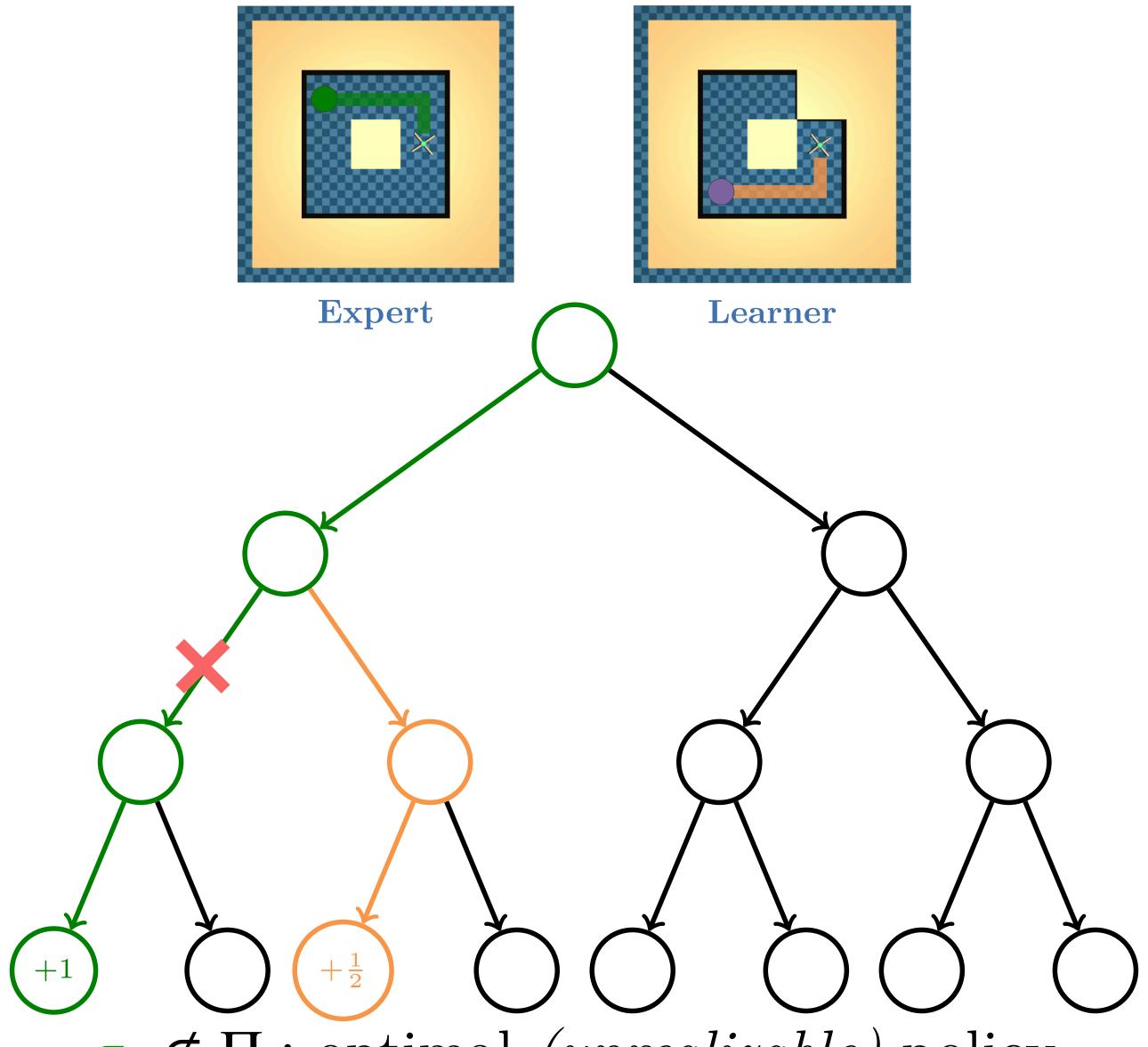


Expert



Learner

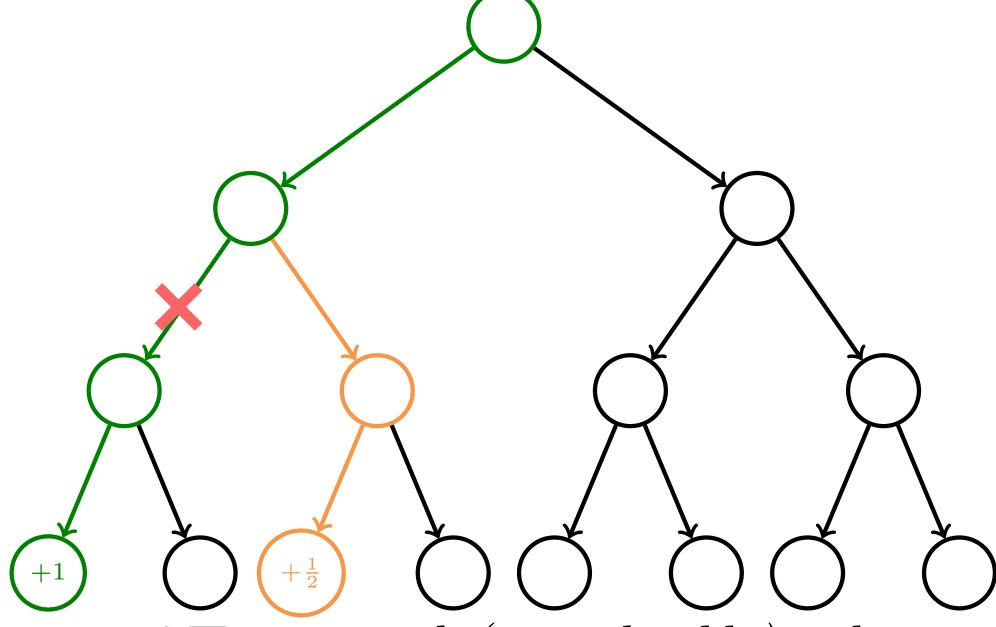




 $\pi_E \notin \Pi$: optimal (unrealizable) policy

 $\pi^* \in \Pi$: optimal realizable policy

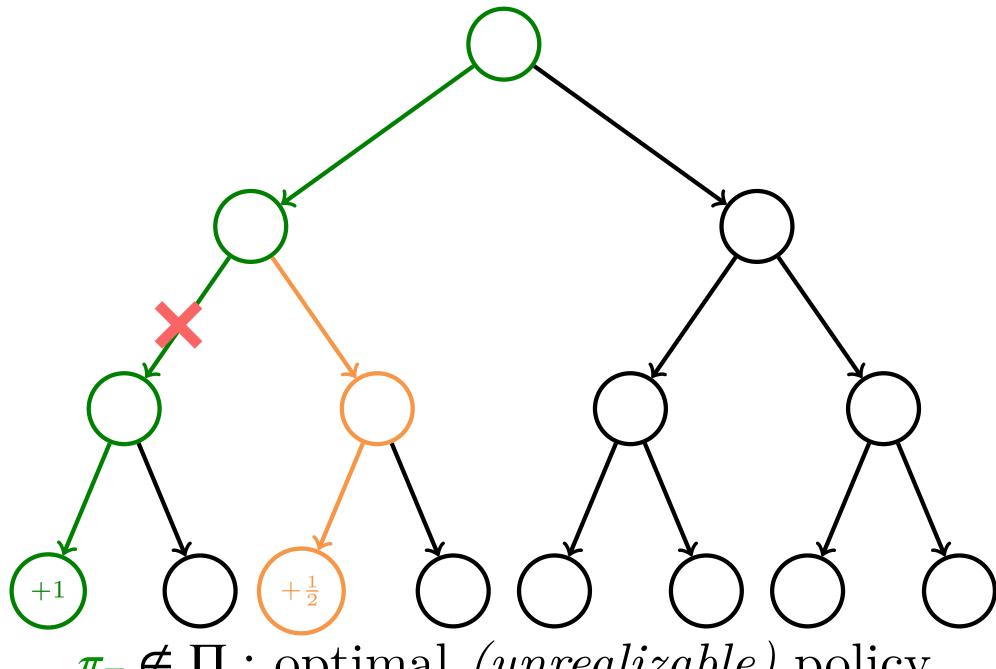
We analyze where local search should be performed



 $\pi_E \notin \Pi$: optimal (unrealizable) policy

 $\pi^* \in \Pi$: optimal realizable policy

We analyze where local search should be performed



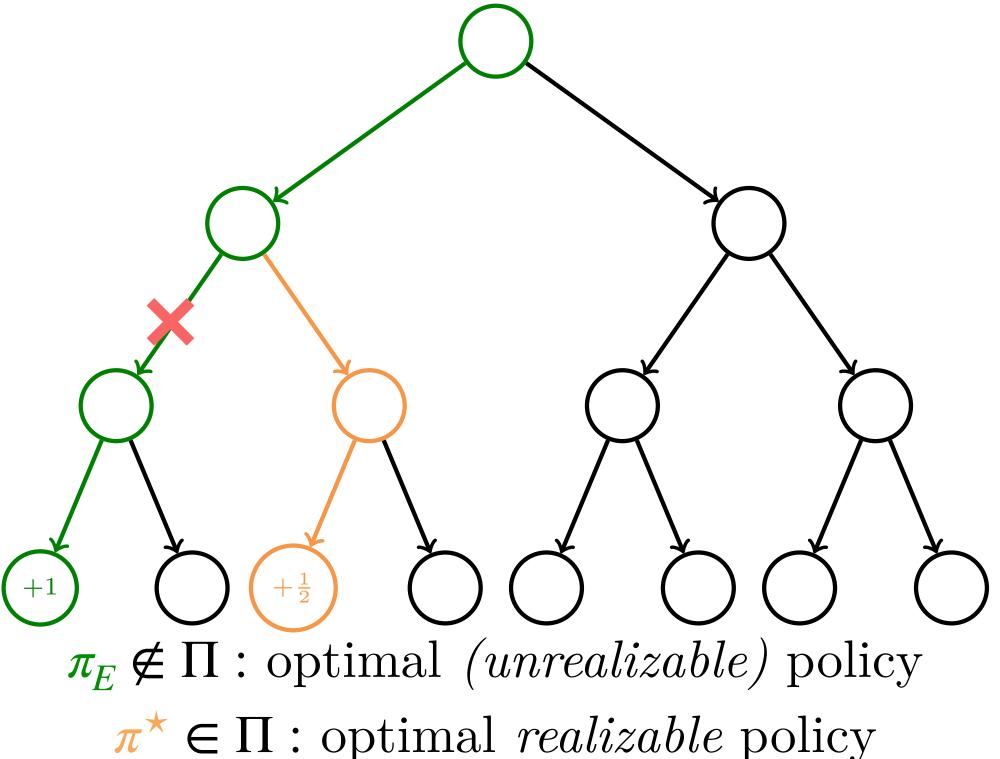
 $\pi_E \notin \Pi$: optimal (unrealizable) policy

 $\pi^* \in \Pi$: optimal realizable policy

Reset distribution

Specifies the policies learner "competes" against

Key Contribution 2 We analyze where local search should be performed Reset distribution should cover π^*



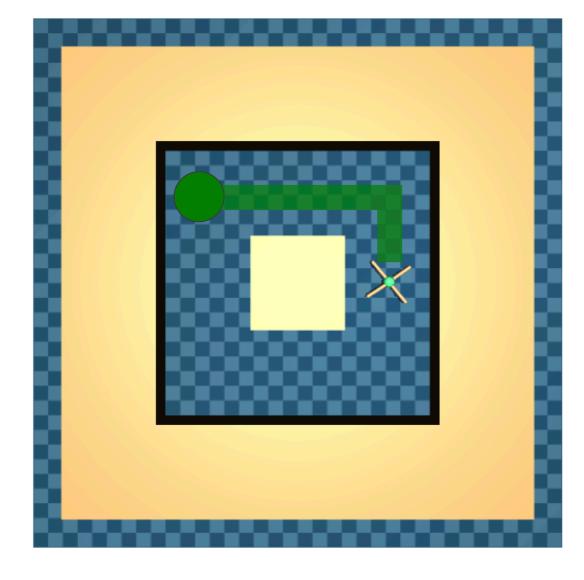
 $\pi^* \in \Pi$: optimal realizable policy

Reset distribution

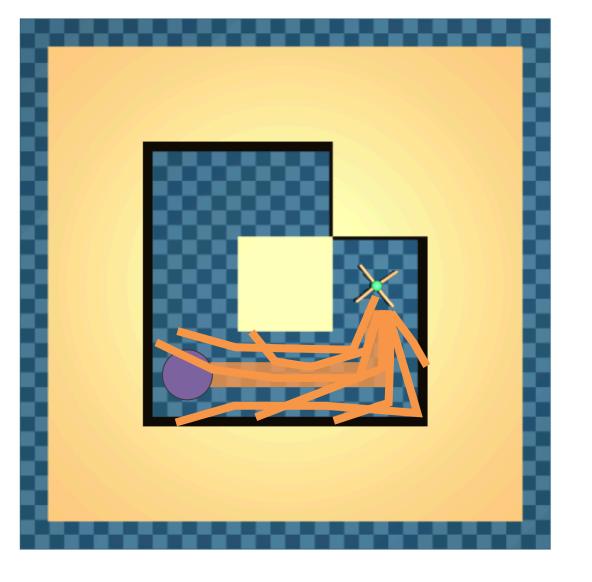
Specifies the policies learner "competes" against

How do use π^* as the reset distribution?

Solution: Use offline data (e.g. sub-optimal demos, self-play data, internet data)



Expert Policy

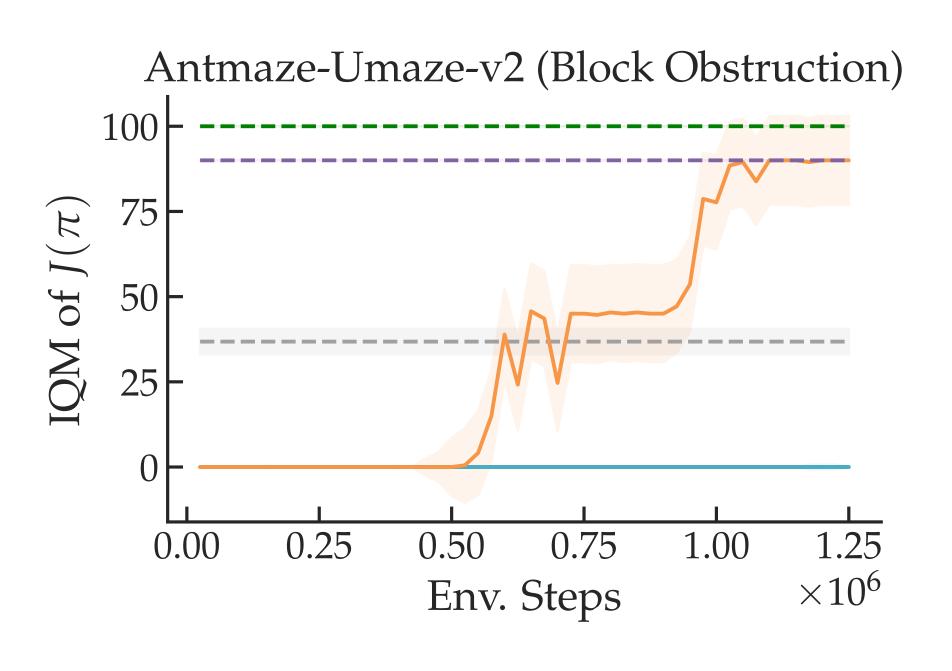


Realizable Policy

Augment our reset distribution with offline data

 \checkmark Resets to realizable offline data outperform expert resets

-In misspecified settings



 $--- \ \, \mathrm{BC}(\pi_E) \quad --- \ \, \mathrm{BC}(\pi_E + \pi_B) \quad --- \ \, \mathrm{MM} \quad --- \ \, \mathrm{Filter}, \, \alpha = 1.0 \quad --- \ \, \pi^\star \quad --- \ \, \pi_E$

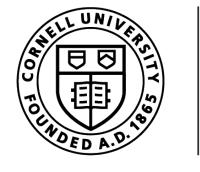
Resets to starting state

Resets to expert data

Efficient Imitation Under Misspecification

Nicolas Espinosa Dice

Joint work with Sanjiban Choudhury, Wen Sun, and Gokul Swamy



Cornell Bowers C·IS
College of Computing and Information Science

