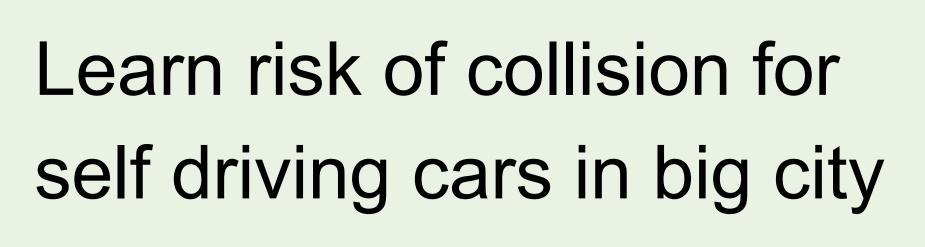
Learning Neural Networks with Distribution Shift: Efficiently Certifiable Guarantees

Gautam Chandrasekaran (UT Austin), Adam Klivans (UT Austin), Lin Lin Lee (UT Austin), Konstantinos Stavropoulos (UT Austin)

Learning with Distribution Shift

- The learner is given labeled examples from training distribution
- But evaluated on unknown testing distribution without labels

e.g.

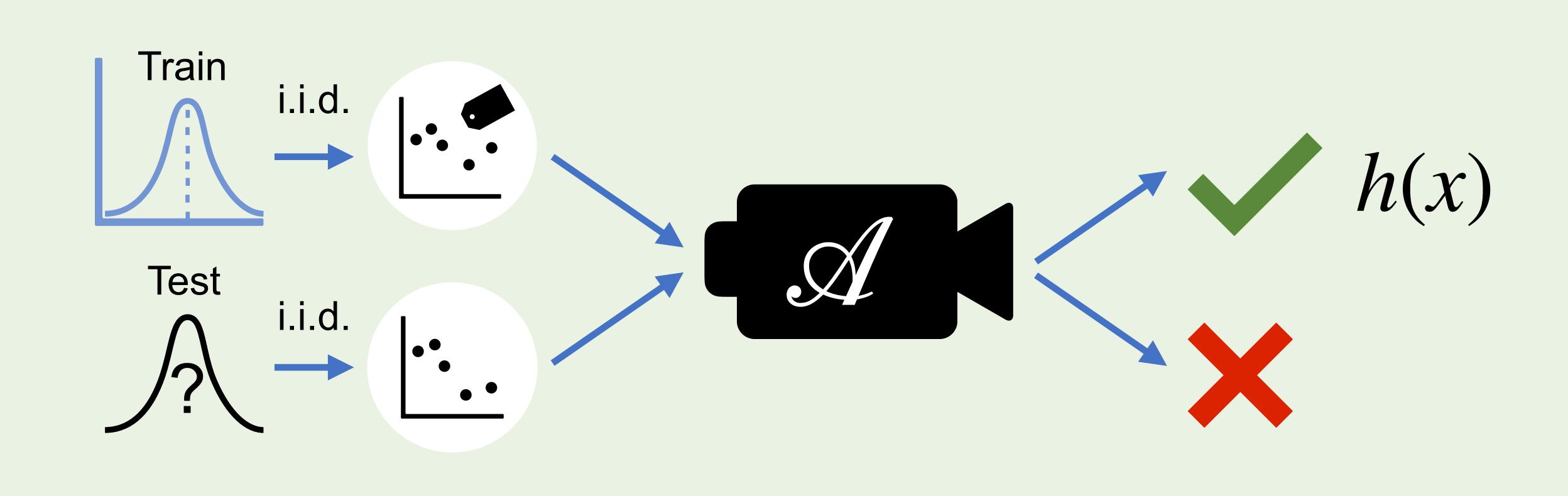




Deploy model in suburbs

When is it safe to trust learner's predictions?

Testable Learning with Distribution Shift



- Soundness. If $\mathscr A$ accepts, then the error of h on the test distribution is at most ϵ greater than the sum of the optimum training error and the best joint training and test error, i.e. at most opt $+\lambda+\epsilon$
- Completeness. If the training and test marginals are the same $(\mathcal{D}_{\chi} = \mathcal{D}_{\chi}')$, then \mathscr{A} accepts
- Run efficient test to compare empirical training and test distributions
- Form hypothesis based on training examples
- Use results of test to evaluate hypothesis on test distribution
- In this work, we study real-valued networks with arbitrary Lipschitz activations

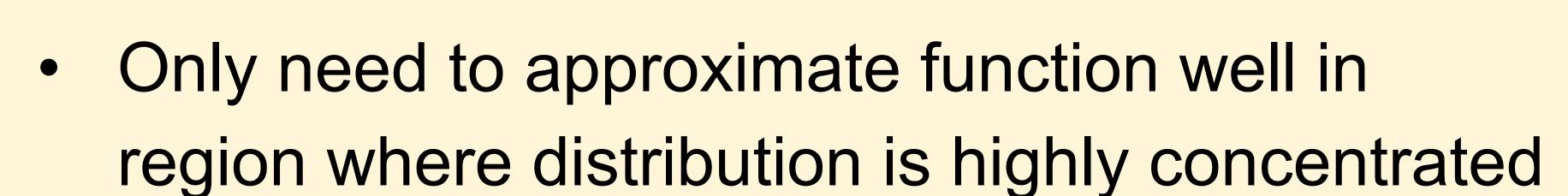
TDS for Strictly Subexponential Distributions

One Hidden-Layer Sigmoid Network	Single ReLU	Sigmoid Network	1-Lipschitz Network
$d^{\text{poly}(k\log(M/\epsilon))}$	$d^{\text{poly}(k\log(M/\epsilon))}$	$d \operatorname{poly}(k \log M(\log(1/\epsilon)^{t-1}))$	$d^{\text{poly}(k2^{t-1}\log(M/\epsilon))}$

Uniform Approximation Polynomial

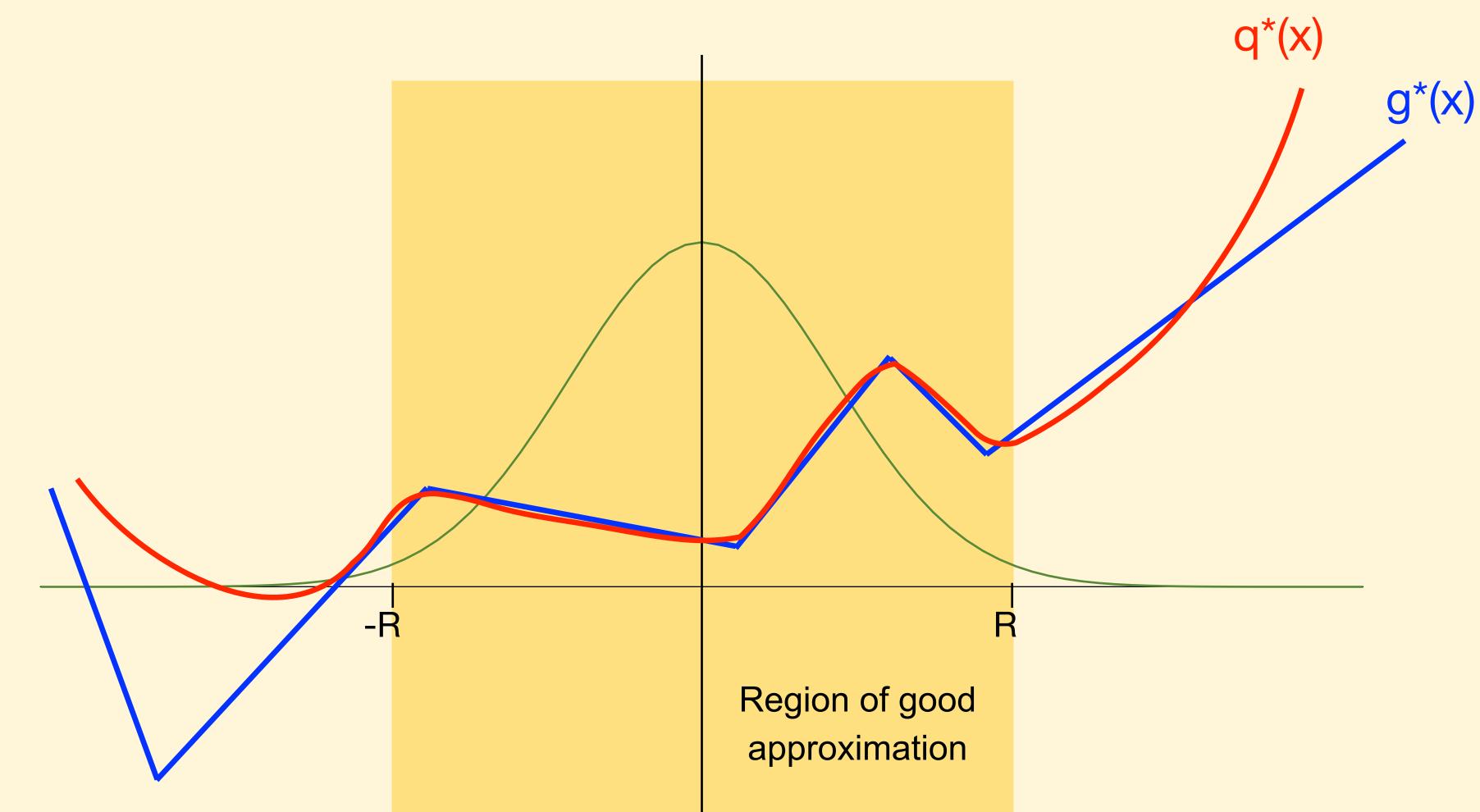
For $g: \mathbb{R}^k \to \mathbb{R}$, $\epsilon > 0$, $R \ge 1$, we say $q: \mathbb{R}^k \to \mathbb{R}$ is an (ϵ, R) -uniform approximation polynomial for g if $\forall \|x\|_2 \le R$:

$$|q(x) - g(x)| \le \epsilon$$
.



 Use tools from approximation theory to find polynomials which uniformly approximate function within a region

Algorithm



- Degree \mathscr{CL}_2 polynomial regression on training data to find \hat{p}
- Degree 2ℓ moment matching between training and test distributions:

$$\mathbb{E}_{x \sim \mathcal{D}_{x}}[x^{\alpha}] \approx \mathbb{E}_{x \sim \mathcal{D}_{x}'}[x^{\alpha}]$$

TDS for Bounded Distributions

One Hidden-Layer Sigmoid Network	Single ReLU	Sigmoid Network	1-Lipschitz Network
$poly(d, M, 1/\epsilon)$	$poly(d, M) \cdot 2^{O(1/\epsilon)}$	$poly(d, M) \cdot 2^{O((\log 1/\epsilon)^{t-1})}$	$poly(d, M) \cdot 2^{\tilde{O}(k\sqrt{k}2^{t-1}/\epsilon)}$

- Obtain efficient algorithms using kernel method, which reduces the search space
- Analogous notion of uniform approximation: approximately represent function wrt kernel
- Representer theorem says polynomial approximation for ground truth function is linear combination of features depending on examples from training and test data

Algorithm

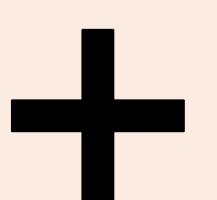
- Kernelized polynomial regression on training data to obtain hypothesis
- Test relative error closeness between covariance matrix of feature map ϕ over test and training marginal, i.e. compare

$$\Phi = \mathbb{E}_{x \sim \mathcal{D}_x}[\phi(x)\phi(x)^{\dagger}]$$
 and $\Phi' = \mathbb{E}_{x \sim \mathcal{D}_x'}[\phi(x)\phi(x)^{\dagger}]$

Polynomial Approximation Theory

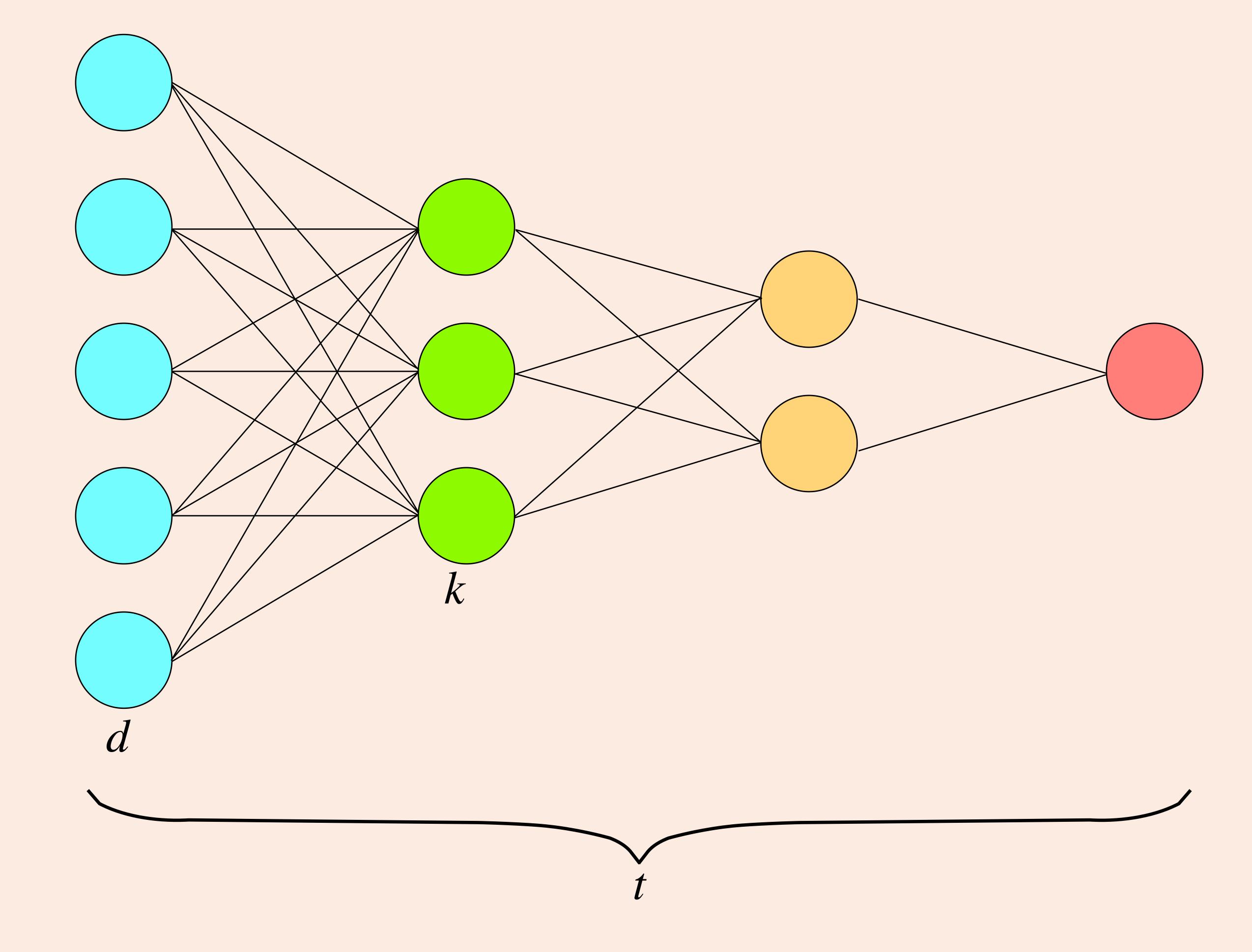
Jackson's Theorem

L-Lipschitz function $f: \mathbb{R}^k \to \mathbb{R}$ has (ϵ, R) -uniform approximation polynomial p of degree $O(LRk/\epsilon)$



BBGK18

If q is a polynomial such that $|q(x)| \le b$, $\forall ||x||_2 \le R$, then sum of magnitudes of coefficients bounded



- View neural network as function of Wx after first layer of weights applied, to project from d-dimensional space to k-dimensional subspace
- For improved degree $O(\log(1/\epsilon))$ for sigmoid networks, replace each neuron with polynomial approximating sigmoid function
- Since output of sigmoid is bounded, after input layer the approximating polynomials can approximate to smaller radius