

Generating Physical Dynamics under Priors

Zihan Zhou¹, Xiaoxue Wang², Tianshu Yu¹

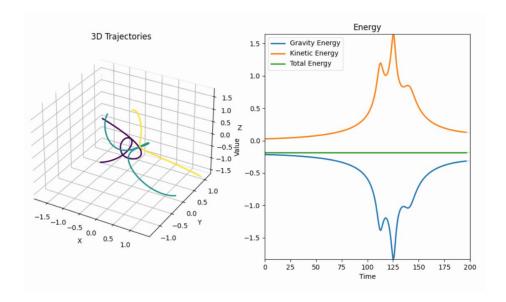
¹School of Data Science, The Chinese University of Hong Kong, Shenzhen

²ChemLex Technology Co., Ltd.

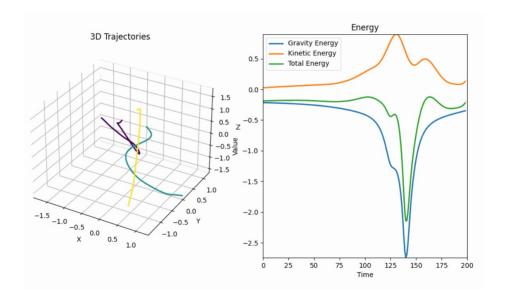
Why Physical Priors Matter?

- Generative models often violate physics laws (energy, momentum, PDEs)
- Consequences: unrealistic simulations, poor generalizability

sample from numerical solver



sample generated from diffusion models



2025/3/31

Bridging Physics and Generative Models

Distributional Priors

Goal:

Respect fundamental symmetries (e.g., rotaion/translation invariance)

- Solution: Equivariant diffusion models
- Impact:
 Generated dynamics are invariant to irrelevant transformations
- Example: 3D particle system rotating with fixed pairwise distances

Physical Constraints

• Goal:

Enforce laws (PDEs, energy/momentum conservation)

- **Solution**: Constraint decomposition + penalty loss
- Impact: Avoids unphysical outputs (e.g., energy drift)
- Example: conservation law: $E_{\text{total}} = \text{const}$

Injecting Priors into diffusion

- The integration of **priors** into the generative process is a complex task that necessitates a deep understanding of the relevant mathematical and physical principles.
 - Distributional Priors
 - Physical Feasibility Priors
- predictive models: predict x_0
- generative models: sample $\mathbb{E}[x_0 \mid x_t]$

Injecting priors ensures that generated dynamics are both realistic and physically plausible.

Method: Distributional Priors

- A distribution q is said to be \mathcal{G} -invariant under the group \mathcal{G} if for all transformations $G \in \mathcal{G}$, we have q(G(x)) = q(x)
- Sufficient conditions: invariant $q_0 \Longrightarrow$ invariant q_t G-invariant distribution
 volume-preserving diffeomorphism
 isometry, and homogeneity q_t is G-invariant
- Property of score functions

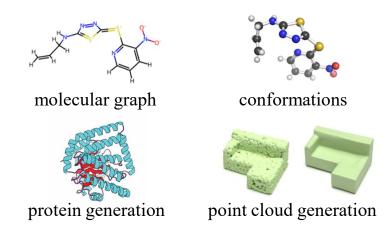
$$q(G(\boldsymbol{x})) = q(\boldsymbol{x}) \implies \nabla_{G(\boldsymbol{x})} \log q(G(\boldsymbol{x})) = \left(\frac{\partial G(\boldsymbol{x})}{\partial \boldsymbol{x}}\right)^{-1} \nabla_{\boldsymbol{x}} \log q(\boldsymbol{x})$$

Score function is $(\mathcal{G}, \nabla^{-1})$ -equivariant Models for noise matching should also be $(\mathcal{G}, \nabla^{-1})$ -equivariant

$$\mathcal{J}_{\text{noise}} (\boldsymbol{\theta}) = \mathbb{E}_{t,\boldsymbol{x}_0,\boldsymbol{\epsilon}} \left[w(t) \left\| \boldsymbol{\epsilon}_{\boldsymbol{\theta}} (\boldsymbol{x}_t, t) - \boldsymbol{\epsilon} \right\|^2 \right]$$
$$\boldsymbol{\epsilon}_{\boldsymbol{\theta}}^* (\boldsymbol{x}_t, t) = -\sigma_t \nabla_{\boldsymbol{x}} \log q_t (\boldsymbol{x}_t)$$

Example:

SE(3)- and permutation-invariant



Distribution	Backbone		
SE(n)-invariant	SO(n)-equivariant Translational-invariant		
Permutation invariant	Permutation invariant		

Method: Physical Feasibility Priors

Prior types:

- Conservation laws: conservation of momentum, energy, flux, ...
- PDE constraints:
 Darcy flow equations, Burger equations, ...

Diffusion loss

$$\mathcal{J}_{\text{noise}}(\boldsymbol{\theta}) = \mathbb{E}_{t,\boldsymbol{x}_{0},\boldsymbol{\epsilon}} \left[w(t) \| \boldsymbol{\epsilon}_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{t}, t \right) - \boldsymbol{\epsilon} \|^{2} \right], \qquad \boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{*} \left(\boldsymbol{x}_{t}, t \right) = -\sigma_{t} \nabla_{\boldsymbol{x}} \log q_{t} \left(\boldsymbol{x}_{t} \right);
\mathcal{J}_{\text{data}}(\boldsymbol{\theta}) = \mathbb{E}_{t,\boldsymbol{x}_{0},\boldsymbol{\epsilon}} \left[w(t) \| \boldsymbol{x}_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{t}, t \right) - \boldsymbol{x}_{0} \|^{2} \right], \quad \boldsymbol{x}_{\boldsymbol{\theta}}^{*} \left(\boldsymbol{x}_{t}, t \right) = \frac{1}{\alpha_{t}} \boldsymbol{x}_{t} + \frac{\sigma_{t}^{2}}{\alpha_{t}} \nabla_{\boldsymbol{x}} \log q_{t} \left(\boldsymbol{x}_{t} \right).$$

Tweedie's formula

$$\mathbb{E}\left[oldsymbol{x}_{0} \mid oldsymbol{x}_{t}
ight] = rac{1}{lpha_{t}}\left(oldsymbol{x}_{t} - \sigma_{t}oldsymbol{\epsilon}_{oldsymbol{ heta}}^{*}\left(oldsymbol{x}_{t}, t
ight)
ight)$$
 $\mathbb{E}\left[oldsymbol{x}_{0} \mid oldsymbol{x}_{t}
ight] = oldsymbol{x}_{oldsymbol{ heta}}^{*}\left(oldsymbol{x}_{t}, t
ight)$

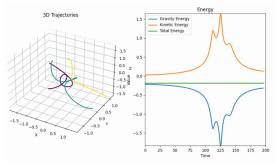
Jensen's gap (main difficulty)

$$\mathcal{R}\left(\mathbb{E}\left[oldsymbol{x}_{0}\midoldsymbol{x}_{t}
ight]
ight)
eq\mathbb{E}\left[\mathcal{R}\left(oldsymbol{x}_{0}
ight)\midoldsymbol{x}_{t}
ight]=oldsymbol{0}$$

Examples:

• conservation of energy:

$$-\sum_{i\neq j}^{K} \frac{Gm^2}{\mathbf{R}_{ij,l}^{(0)}} + \sum_{k=1}^{K} \sum_{d=1}^{D} \frac{1}{2} m \left(\mathbf{V}_{l,k,d}^{(0)} \right)^2 = \text{constant}$$

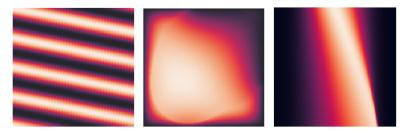


• PDE constraints:

Advection: $\partial_t u(t,x) + \beta \partial_x u(t,x) = 0,$

Darcy flow: $\partial_t u(x,t) - \nabla(a(x)\nabla u(x,t)) = f(x)$,

Burger: $\partial_t u(x,t) + u(x,t)\partial_x u(x,t) = 0$,



Method: Physical Feasibility Priors

Apply the penalty loss on $\mathbb{E}\left[oldsymbol{x}_0 \mid oldsymbol{x}_t ight]$:

$$\mathcal{J}(\boldsymbol{\theta}) = \mathcal{J}_{\text{score}}(\boldsymbol{\theta}) + \lambda \mathcal{J}_{\mathcal{R}}(\boldsymbol{\theta})$$

Handling Jensen's gap:

$$\mathcal{R}\left(\mathbb{E}\left[oldsymbol{x}_{0}\midoldsymbol{x}_{t}
ight]
ight)
eq\mathbb{E}\left[\mathcal{R}\left(oldsymbol{x}_{0}
ight)\midoldsymbol{x}_{t}
ight]=oldsymbol{0}$$

Case analysis of constraints $\mathcal{R}\left(oldsymbol{x}_{0} ight)$

• Linear / convex / reducible nonlinear:

$$\mathcal{J}_{\mathcal{R}}(\boldsymbol{\theta}) = \mathbb{E}_{t,\boldsymbol{x}_{0},\boldsymbol{\epsilon}} \left[w(t) \left\| \mathbf{W}_{0} \mathbf{u}_{\boldsymbol{\theta}} \left(\boldsymbol{x}_{t}, t \right) + \mathbf{b}_{0} \right\|^{2} \right]$$

• Multilinear: $\mathcal{R}(\boldsymbol{x}_0) = \mathbf{W}_0 \mathbf{u}_0 + \mathbf{b}_0 = \mathbf{0}$ $\mathcal{J}_{\mathcal{R}}(\boldsymbol{\theta}) = \mathbb{E}_{t,\boldsymbol{x}_0,\boldsymbol{\epsilon}} \left[w(t) \left\| \mathcal{R} \left(\boldsymbol{x}_{\boldsymbol{\theta}} \left(\boldsymbol{x}_t, t \right) \right) \right\|^2 \right]$

• General nonlinear: $\mathcal{R}(\boldsymbol{x}_0) = \mathbf{g}(\mathbf{h}(\boldsymbol{x}_0)) = \mathbf{0}$ $\mathcal{J}_{\mathcal{R}}(\boldsymbol{\theta}) = \mathbb{E}_{t,\boldsymbol{x}_0,\boldsymbol{\epsilon}} \left[w(t) \left\| \tilde{\boldsymbol{x}}_{\boldsymbol{\theta}}(\boldsymbol{x}_t,t) - \mathbf{h}(\boldsymbol{x}_0) \right\|^2 \right]$

Examples:

conservation of energy:

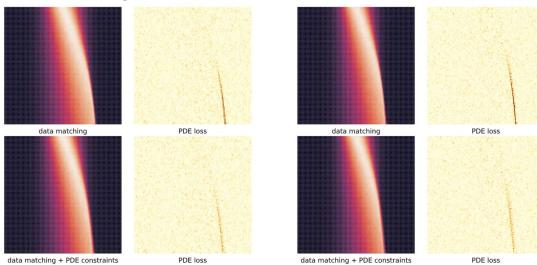
$$-\sum_{i\neq j}^{K} \frac{Gm^2}{\mathbf{R}_{ij,l}^{(0)}} + \sum_{k=1}^{K} \sum_{d=1}^{D} \frac{1}{2} m \left(\mathbf{V}_{l,k,d}^{(0)} \right)^2 = \text{constant}$$

$$\frac{\frac{1}{\mathbf{R}_{ij,l}^{(0)}} = \text{potential energy}_l }{\left(\mathbf{V}_{l,k,d}^{(0)}\right)^2 = \text{kinetic energy}_l }$$

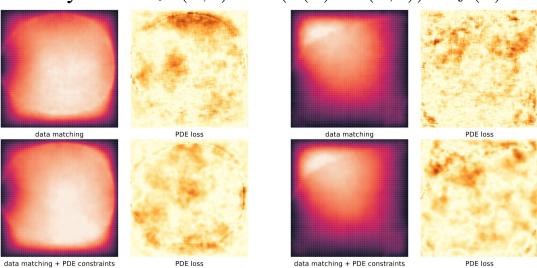
$$\underbrace{ \begin{array}{c} \mathcal{J}_{\mathrm{GPE}}(\boldsymbol{\theta}) = \mathbb{E}_{t, \boldsymbol{x}_0, \boldsymbol{\epsilon}} \left[w_1(t) \sum_{i \neq j, l} \left\| \frac{1}{(\mathbf{R}_{\boldsymbol{\theta}})_{ij, l}} - \frac{1}{\mathbf{R}_{ij, l}^{(0)}} \right\|^2 \right] } \\ \mathcal{J}_{\mathrm{KE}}(\boldsymbol{\theta}) = \mathbb{E}_{t, \boldsymbol{x}_0, \boldsymbol{\epsilon}} \left[w_2(t) \sum_{k, l, d} \left\| (\mathbf{V}_{\boldsymbol{\theta}})_{l, k, d}^2 - \left(\mathbf{V}_{l, k, d}^{(0)} \right)^2 \right\|^2 \right] \end{aligned}$$

Experiments: PDE Datasets

Burger:
$$\partial_t u(x,t) + u(x,t)\partial_x u(x,t) = 0$$



Darcy flow: $\partial_t u(x,t) - \nabla(a(x)\nabla u(x,t)) = f(x)$

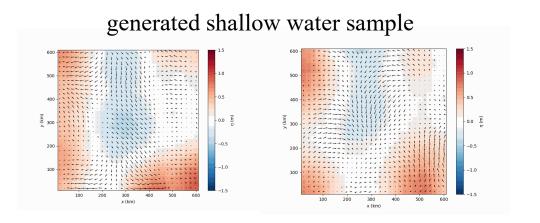


Prediction, RMSE compared with ground-truth

Method	Advection ($\times 10^{-2}$)	Darcy flow $(\times 10^{-2})$
w/o prior	1.7263 ± 0.0491	2.0648 ± 0.0600
w/ prior	1.6536 ± 0.0677	1.9678 ± 0.0651

Generation, RMSE of PDE constraints

Method	Advection	Burger	Shallow water
w/o prior	2.398 ± 0.024	6.862 ± 0.060	8.0153 ± 0.0960
w/ prior	2.305 ± 0.001	6.610 ± 0.012	7.7618 ± 0.0645



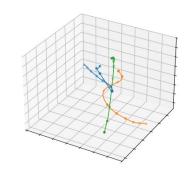
Experiments: Particle Dynamics Datasets

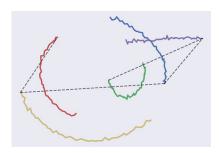
energy conservation

three-body:
$$-\sum_{i\neq j}^{K} \frac{Gm^2}{\mathbf{R}_{ij,l}^{(0)}} + \sum_{k=1}^{K} \sum_{d=1}^{D} \frac{1}{2} m \left(\mathbf{V}_{l,k,d}^{(0)} \right)^2 = \text{constant}$$

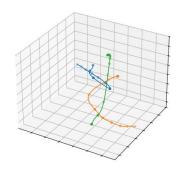
five-spring:
$$\sum_{(i,j)\in\mathcal{E}} \frac{1}{2} \kappa \left(\mathbf{R}_{ij,l}^{(0)}\right)^2 + \sum_{k=1}^K \sum_{d=1}^D \frac{1}{2} m \left(\mathbf{V}_{l,k,d}^{(0)}\right)^2 = \text{constant},$$

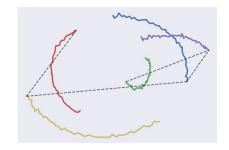
Baseline method



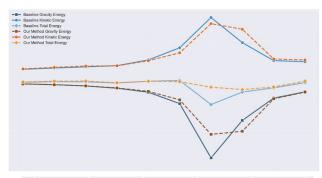


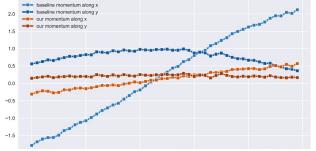
Our method





Conservation over time





Method		Three-body			Five-spring	
Wicthod	Traj error	Vel error	Energy error	Dynamic error	Momentum error	Energy error
w/o prior	2.4132 ± 0.1208	2.5745 ± 0.0790	4.3292 ± 0.7235	5.1754 ± 0.0286	5.3699 ± 0.0462	1.0618 ± 0.0243
w/ prior	1.9880 ± 0.3418	0.8328 ± 0.1042	$0.5465{\pm}0.0705$	5.0731 ± 0.0406	$0.3898 {\pm} 0.0118$	0.7418 ± 0.0129

Generation under Physics Feasibility Priors

A framework to generate physics-compliant dynamics by integrating priors into diffusion models.

This advances AI4Physics by:

- Ensuring *feasibility* through principled constraint enforcement.
- Enabling *generalization* via equivariant architectures.

Thanks!

