Data Selection via Optimal Control for Language Models

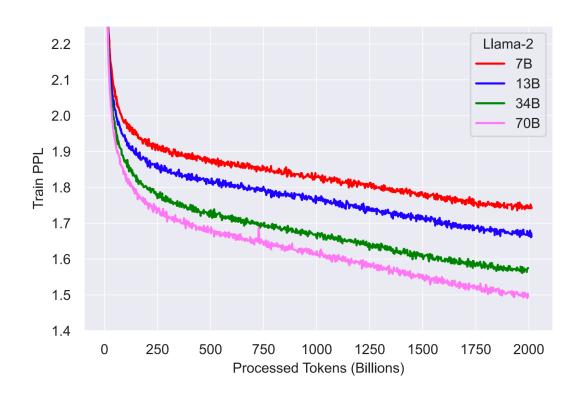
Yuxian Gu^{1,2}, Li Dong², Hongning Wang¹, Yaru Hao², Qingxiu Dong³, Minlie Huang¹, Furu Wei²

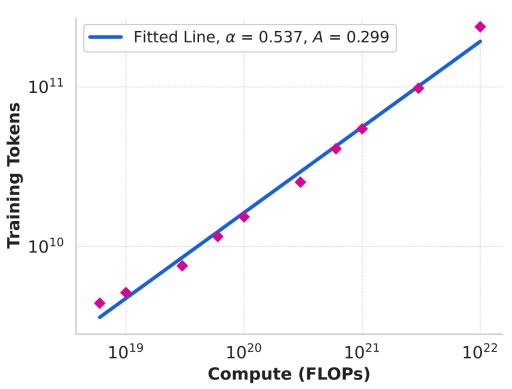
¹The CoAl Group, Tsinghua University

²Microsoft Research, ³Peking University

Data challenges for pre-training LMs

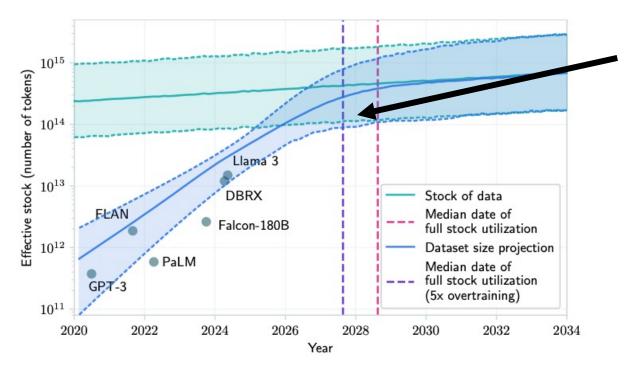
- Large amount of data makes pre-training quite inefficient.
- High-quality pre-training data is running out.
- Data selection/cleaning is a heuristic-based tricky task.





Motivation

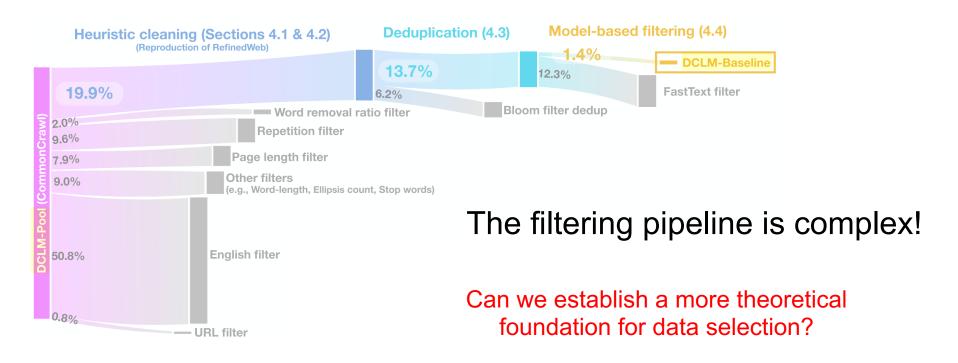
- Large amount of data makes pre-training quite inefficient.
- High-quality pre-training data is running out.
- Data selection/filtering is a heuristic-based tricky task.



Models consume faster than humans produce.

Data challenges for pre-training LMs

- Large amount of data makes pre-training quite inefficient.
- High-quality pre-training data is running out.
- Data selection/filtering is a heuristic-based tricky task.



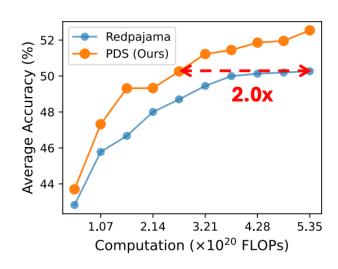
Data Selection based on Optimal Control

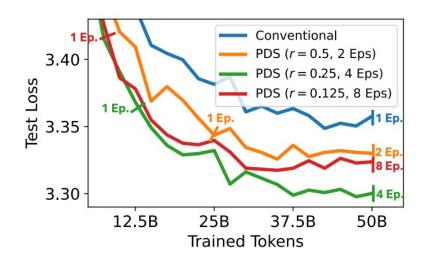
- Data challenges for pre-training LMs
 - Large amount of data makes pre-training quite inefficient.
 - High-quality pre-training data is running out.
 - Data selection/cleaning is a heuristic-based tricky task.
- Our data selection method PDS addresses the above problems

Theorem 2.1 (PMP Conditions for Data Selection)
$$\theta_{t+1}^* = \theta_t^* - \eta \nabla L(\theta_t^*, \gamma^*), \quad \theta_0^* = \theta_0,$$

$$\lambda_t^* = \lambda_{t+1}^* + \nabla J(\theta_t^*) - \eta \nabla^2 L(\theta_t^*, \gamma^*) \lambda_{t+1}^*,$$

$$\gamma^* = \arg \max_{\gamma} \sum_{n=1}^{|\mathcal{D}|} \gamma_n \left[\sum_{t=0}^{T-1} \lambda_{t+1}^* \nabla l(x_n, \theta_t^*) \right]$$





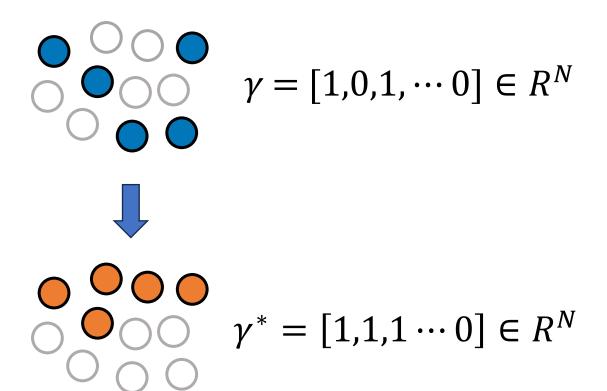
Good theoretical guarantees

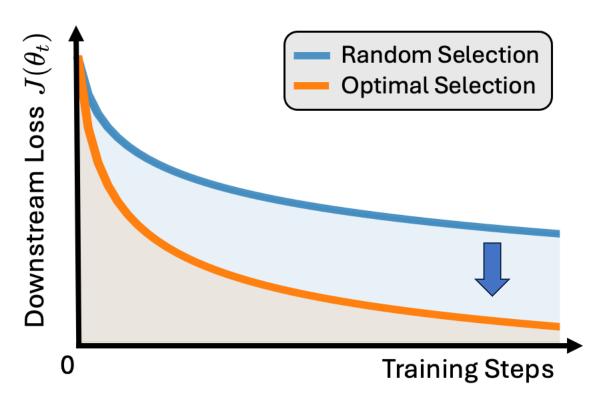
2x acceleration on selected data

Perf. improvement on limited data

Data Selection as a Control Problem

The Data selection strategy is the control signal to optimize

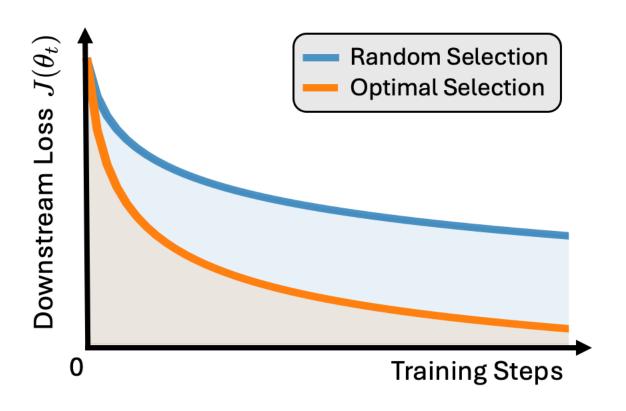




Formulation

The Data selection strategy is the control signal to optimize

$$egin{aligned} \min_{oldsymbol{\gamma}} & \sum_{t=1}^T J(oldsymbol{ heta}_t), \ & ext{s.t.} & oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t - \eta
abla L(oldsymbol{ heta}_t, oldsymbol{\gamma}) \ & L(oldsymbol{ heta}, oldsymbol{\gamma}) = \sum_{n=1}^{|\mathcal{D}|} \gamma_n l(x_n, oldsymbol{ heta}) \end{aligned}$$



Solving the Problem

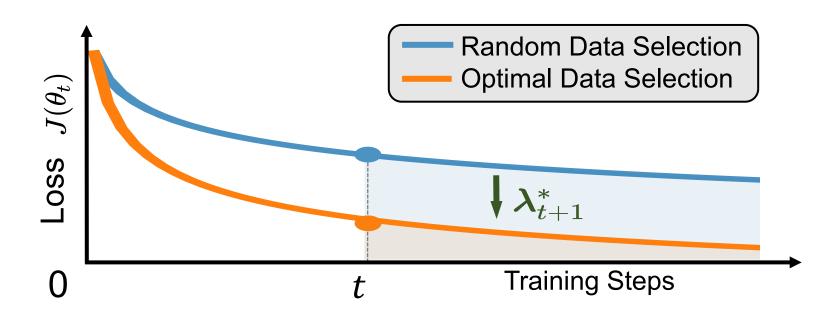
- Pontryagin's Maximum Principle (PMP)
 - Gives a necessary condition for the optimality of the problem

$$egin{aligned} \min_{oldsymbol{\gamma}} & \sum_{t=1}^T J(oldsymbol{ heta}_t), \ & ext{s.t.} & oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t - \eta
abla L(oldsymbol{ heta}_t, oldsymbol{\gamma}) \ & L(oldsymbol{ heta}, oldsymbol{\gamma}) = \sum_{n=1}^{|\mathcal{D}|} \gamma_n l(x_n, oldsymbol{ heta}) \end{aligned}$$

Lev Pontryagin, 1908 - 1988

PDS: PMP-Based Data Selection

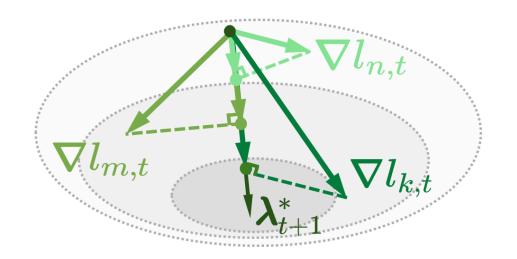
PMP gives the ideal gradient direction for optimal data selection



$$\boldsymbol{\lambda}_t^* = \boldsymbol{\lambda}_{t+1}^* + \nabla J(\boldsymbol{\theta}_t^*) - \eta \nabla^2 L(\boldsymbol{\theta}_t^*, \boldsymbol{\gamma}^*) \boldsymbol{\lambda}_{t+1}^*$$

PDS: PMP-Based Data Selection

Select data whose gradient aligns with the optimal direction



$$\left[\sum_{t} \lambda_{t+1}^* ^ op l_{n,t} < \sum_{t} \lambda_{t+1}^* ^ op l_{m,t} < \sum_{t} \lambda_{t+1}^* ^ op l_{k,t}
ight]$$

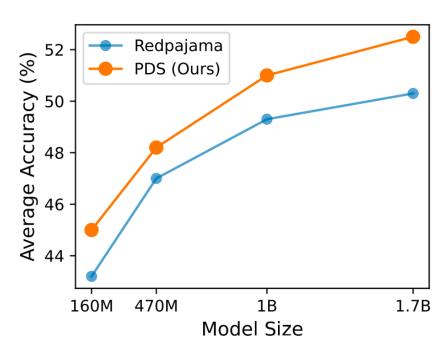
Select 30%: $\gamma_n = 0$ $\gamma_m = 0$ $\gamma_k = 1$

$$\gamma^* = \arg\max_{\gamma} \sum_{n=1}^{|\mathcal{D}|} \gamma_n \left[\sum_{t=0}^{T-1} \boldsymbol{\lambda}_{t+1}^* \nabla l(x_n, \boldsymbol{\theta}_t^*) \right]$$

Performance Improvement

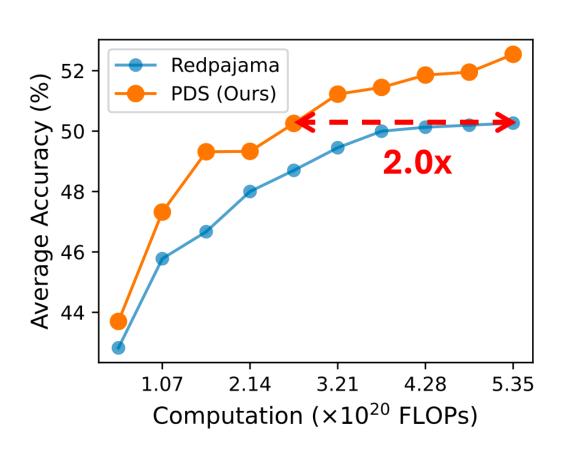
- Select 50B-token corpus from 125B-token corpus.
- Match the total training steps with the baselines (training computation)

	HS	LAMB	Wino.	OBQA	ARC-e	ARC-c	PIQA	SciQ	BoolQ	Avg.
				Model Si	ze = 470M	[
Conventional	36.7	41.4	52.4	30.4	44.8	25.2	61.0	70.6	60.4	47.0
RHO-Loss	36.6	42.4	53.0	29.4	43.7	25.2	60.4	72.8	59.8	47.0
DSIR	36.4	42.6	51.7	29.8	46.0	24.7	61.0	72.0	55.8	46.7
IF-Score	36.6	41.8	53.4	29.6	44.7	25.1	60.8	68.8	58.7	46.6
PDS	37.9	44.6	52.3	29.8	46.5	25.8	61.8	73.8	61.4	48.2
				Model S	Size = 1B					
Conventional	39.9	47.6	52.4	30.6	49.3	26.4	63.1	73.7	60.9	49.3
RHO-Loss	39.8	47.0	53.0	30.8	48.0	26.4	62.9	71.1	61.0	48.9
DSIR	40.8	47.8	53.0	31.2	49.8	26.8	62.7	76.6	58.0	49.6
IF-Score	39.4	47.0	52.6	28.6	49.4	26.4	63.5	74.0	60.5	49.0
PDS	42.1	48.8	54.0	33.4	51.3	28.0	64.1	78.5	58.7	51.0



Computation Saving

2.0x acceleration on 1.7B models
 PDS is efficient and offline



Select data once for all models

		FLOPs ($\times 10^{20}$)	Actual Time
PDS	Proxy γ -solver Data Scorer Data Selection	•	15.2 Hours 1.50 Hours 10.2 Minutes
	Pre-Training	5.1	144 Hours

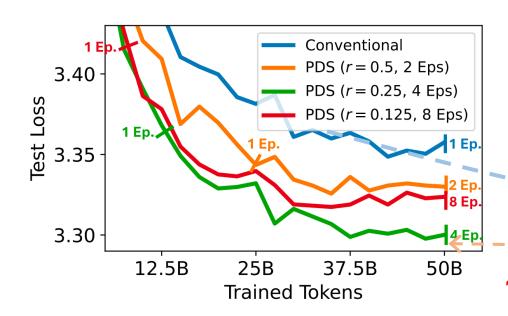
Data Utilization Improvement

Performance improvement with limit data (50B tokens)

Pre-Training (w/o Data Selection)
Select 50% data, train for 2 epochs

Select 25% data, train for 4 epochs

Select 12.5% data, train for 8 epochs

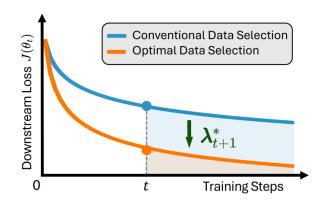


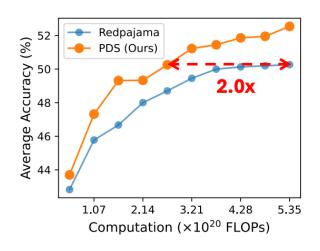
Extrapolation with Scaling Laws

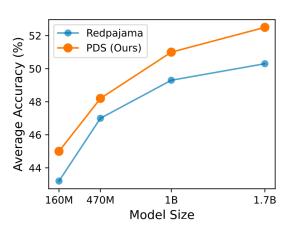
~1.8x reduction of data use

Conclusion

- A novel perspective for Data selection: Optimal Control problem
 - ◆ Good theoretical guarantees
 - ◆ Efficient Implementation
 - ◆ Sound empirical results ✓







A rigorous, theory-driven alternative to the ad-hoc practices that currently dominate LM pre-training

Thanks!

- Paper: https://arxiv.org/abs/2410.07064
- GitHub: https://github.com/microsoft/LMOps/tree/main/data_selection
- HuggingFace: https://huggingface.co/Data-Selection

Paper: Code:

