

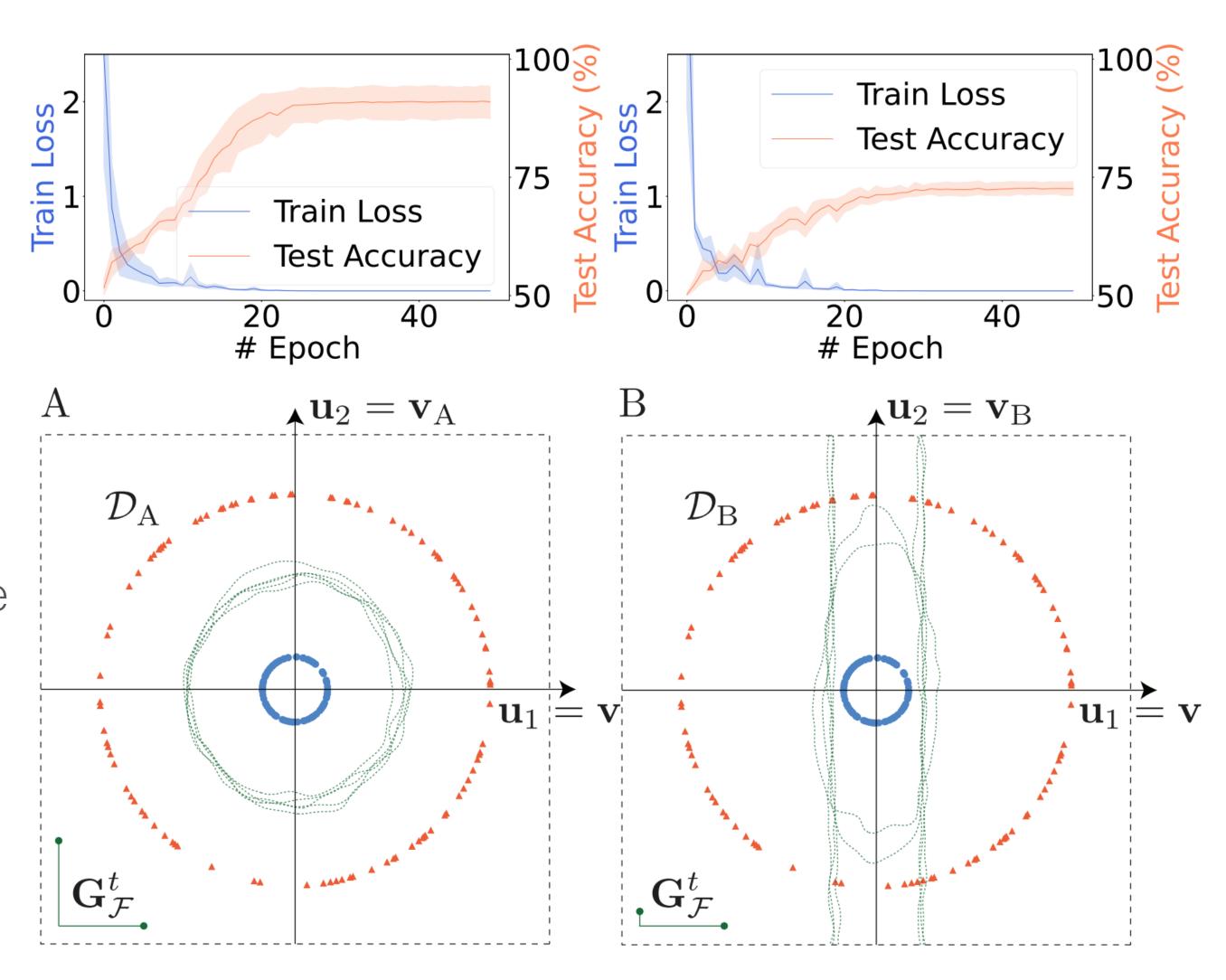
Geometric Inductive Biases of Deep Networks: The Role of Data and Architecture

ICLR 2025 - Spotlight (top 5%)

A Motivating Example

The Doughnut

- Each circle corresponds to a class.
- The circles reside on a plane.
- The plane on high-dimensional space.
- A ResNet generalizes only when the plane is on a specific subspace.
- An MLP generalizes regardless of the orientation of the plane.



Definitions

Compact architecture-dependent summary of geometry

- Average geometry of family of models \mathcal{F} (architecture) with $f_{\theta}(\,.\,) \in \mathcal{F}$:

$$\mathbf{G}_{\mathscr{F}}(x) = \mathbb{E}_{\theta} \left[\nabla_{x} f_{\theta}(x) \nabla_{x} f_{\theta}(x)^{\mathsf{T}} \right].$$

- Geometry of a neural network
- Related to loss Hessian w.r.t. the input and local decision boundaries
- Average geometry evolution $\Delta_{\mathscr{F}}(x)$: the derivative of average geometry w.r.t. time (gradient-flow model).
 - Changes in the geometry of a neural network

The Role of Data and Architecture

At initialization

• Conjecture 1 (at initialization):

$$\mathbb{E}_{x \sim \mathcal{N}(0, \mathbf{I})} \left[\Delta_{\mathcal{F}}(x) \right] \propto \mathbb{E}_{x \sim \mathcal{N}(0, \mathbf{I})} \left[\mathbf{G}_{\mathcal{F}}(x) \right]$$

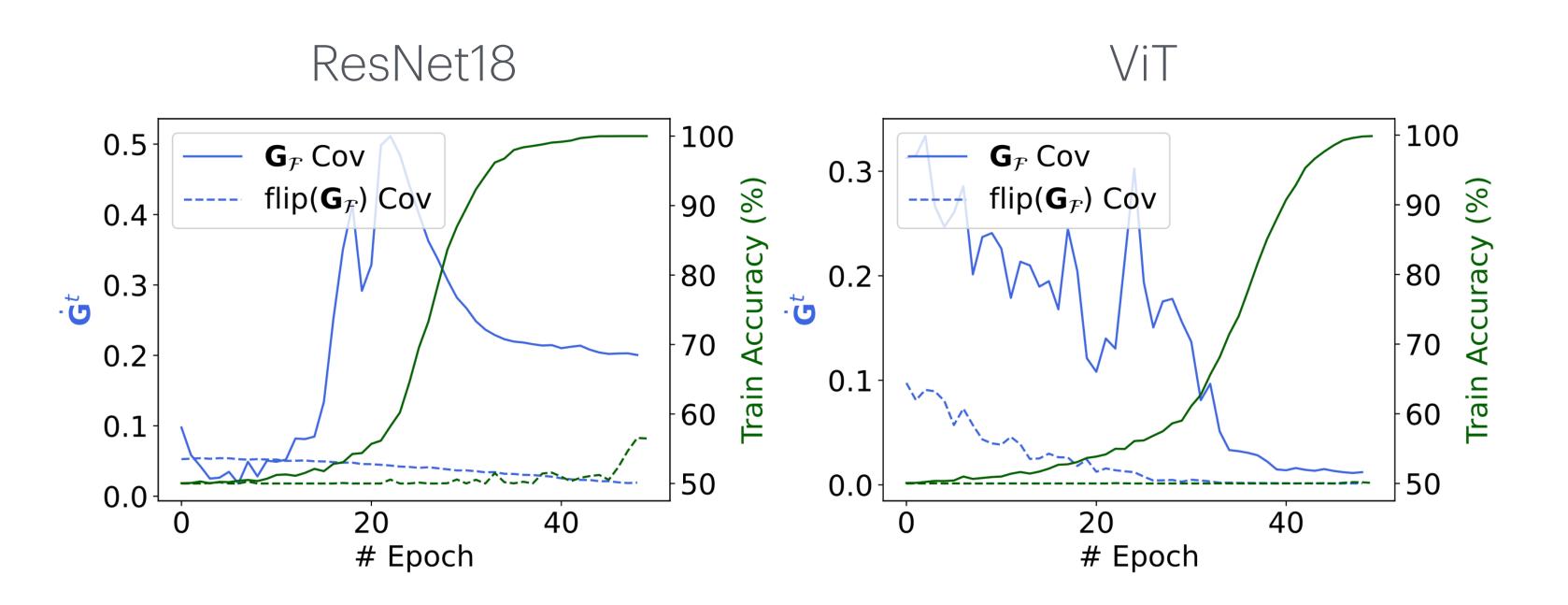


- At initialization, changes in geometry is the data support projected onto initial geometry.
- What if this remains the case later in training as well?

Geometric Invariance Hypothesis

Linear projection of data support onto average geometry

- Let $\mathbf{Eig}(\mathbf{A})$ be subspace defined by top eigenvalues of \mathbf{A} .
- . The geometry remains **invariant** in directions not in $\mathbf{Eig}\left(\mathbb{E}_{x\sim\mathcal{N}(0,\mathbf{I})}\left[\mathbf{G}_{\mathscr{F}}(x)\right]\right)$.



A Motivating Example

The Doughnut

- The plane defined by orthogonal vectors $(\mathbf{u}_1, \mathbf{u}_2)$.
- \mathscr{D}_A : both \mathbf{u}_1 and \mathbf{u}_2 are in Eig $\left(\mathbb{E}_{x \sim \mathscr{N}(0, \mathbf{I})} \left[\mathbf{G}_{\mathscr{F}}(x)\right]\right)$.
- \mathscr{D}_B : only \mathbf{u}_1 is in $\mathbf{Eig} \left(\mathbb{E}_{x \sim \mathscr{N}(0,\mathbf{I})} \left[\mathbf{G}_{\mathscr{F}}(x) \right] \right).$

