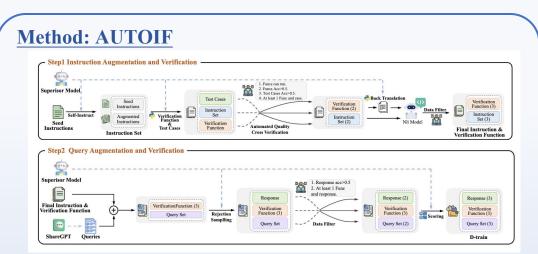


Self-play with Execution Feedback: Improving Instruction-following Capabilities of Large Language Models

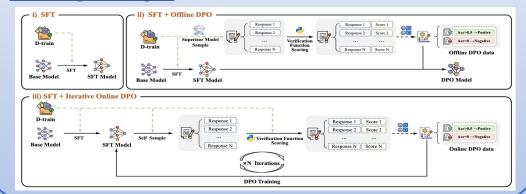
Guanting Dong, Keming Lu, Chengpeng Li, Tingyu Xia, Bowen Yu†, Chang Zhou, Jingren Zhou Owen Team, Alibaba Inc.

Motivation



A core strength of LLMs lies in executing natural language instructions. We presents AUTOIF, the first scalable framework for automated generation of high-quality instruction-following data. By reframing data validation as code verification, AUTOIF orchestrates three components: instruction generation, responsevalidation code synthesis, and unit test creation, forming a closedloop quality assurance system. Execution feedback-driven rejection sampling efficiently produces data for SFT and RLHF. Evaluations on top open-source LLMs demonstrate substantial improvements across SFT, Offline/Online DPO training paradigms, particularly in self-alignment strong-to-weak distillation.

Contribution & Conclusion


- > We propose AUTOIF to efficiently enhance LLMs' instruction following. It converts instruction-following alignment into auto code verification, making LLMs generate instructions, verification code, and unit test samples.
- > Based on DPO algorithms, we treat executor feedback as a reward model, create pairwise preference samples, and design offline/on-policy strategies to optimize the model's instructionfollowing.
- > AUTOIF is validated on benchmarks in "Self-Alignment" and "Strong-to-Weak" settings. It reaches over 90% accuracy in IFEval without sacrificing general and reasoning capability

ICLR 2025 (Spotlight, Top5% paper)

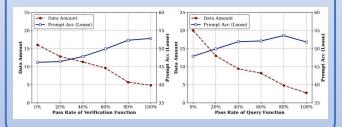
- 1. Instruction Augmentation: Starting with seed instructions, LLMs generate augmented instructions through self-instruct.
- 2. Verification Functions: Automatically generating Python functions to verify the correctness of
- **3. Back-Translation:** Ensuring consistency between instructions and verification functions.
- **4. Query Augmentation:** Creating diverse queries and responses for training.
- 5. Quality Filtering: Filtering data based on verification function accuracy and query relevance.

Training Strategies

Main Results

	Pr (S)	Pr. (L)	Ins. (S)	Ins. (L)	Level 1	Level 2	Level 3	Level 4	Level 5	Avg														
Baselines (< 10B)																								
Qwen2-7B	37.7	43.6	49.4	53.4	55.6	53.5	53.7	49.9	48.6	52.3	74.4	64.4	71.1	58.1										
Qwen2-7B(ShareGPT)	30.9	33.5	42.4	45.2	56.1	52.7	50.8	45.2	47.9	50.5	70.2	59.8												
LLaMA3-8B	24.6	26.1	38.1	39.7	10.0	10.3	10.5	14.3	12.7	11.6	24.2													
LLaMA3-8B(ShareGPT)		26.4	33.8	37.1	44.0	40.0	39.6	33.3	33.6	38.1	35.2													
Mistral-7B	23.3	24.6	38.4	39.6	40.1	39.7	37.9	35.7	36.7	38.0	38.2	47.6	20.5	38.4										
Baselines (> 10B)																								
Qwen2-72B-Instruct	77.1	80.4	84.4	86.9	70.2	66.6	63.5	58.1	56.3	62.9	83.8	80.8	87.9	73.8										
LLaMA3-70B-Instruct	77.8	83.8	84.2	88.8	60.7	60.5	61.1	61.7	60.3	60.9	60.2	80.5	92.6	78.7										
Mixtral-8x22B	41.8	47.3	55.2	60.0	63.9	60.0	58.2	56.2	55.3	58.7	-	-	-	-										
GPT-4 [†]	76.9	79.3	83.6	85.4	84.7	77.6	76.2	77.9	73.3	77.9	-	-	-	18										
GPT-3.5 Turbo [†]	-	-	-	-	80.3	71.2	74.2	69.6	67.1	72.5	-	-	-	-										
					Supervi	ision Mod	lel: Qwen	2-72B				59.8 59.4 52.4 38.8 4.5 0.6 44.6 20.5 38.1 47.6 20.5 38.4 80.8 87.9 73.8 80.5 92.6 78.7												
Strong-to-Weak																								
Qwen2-7B-SFT	$40.7_{+3.0}$	44.5+0.9	51.3+1.9	55.4+2.0	60.2+4.6	53.7+0.2	54.3+0.6	49.9+0.0	48.6+0.0	53.3+1.0	73.9+0.0	64.4+0.0	74.1+3.0	58.3+0.2										
w/ Offline DPO	41.2+3.5	44.7+1.2	51.4+2.0	56.2+2.8	61.4+58	54.5+1.0	54.3+0.6	51.2+1.3	48.6+0.0	54.0+1.7	75.1+0.7	64.5+0.1	72.9+1.8	59.5+1.4										
w/ Online DPO	44.0+6.3	46.6+3.0	55.0+5.6	57.9+4.5	61.4+5.8	56.8+3.3	57.8+4.1	55.4+5.5	51.6+3.0	56.6+4.3	76.0+1.6	64.8+0.4	72.3+1.2	58.2+0.1										
Self-Alignment																								
Qwen2-72B-Instruct w/ Online DPO	80.2+3.1	82.3+1.9	86.1+1.7	$88.0_{\pm 1.1}$	76.2+6.0	69.8+3.2	67.0+3.5	61.6+3.5	62.8+6.5	67.5+4.6	84.9+1.1	81.2+0.4	88.2+0.3	$75.0_{\pm 1.2}$										
Supervision Model: LLaMA3-70B																								
Strong-to-Weak																								
LLaMA3-8B-SFT														38.2+37.6										
w/ Offline DPO														38.5+37.9										
w/ Online DPO	28.8+4.2	43.1+17.0	42.2+4.1	56.0+16.3	54.6+44.6	52.1+41.8	50.0+39.5	49.0+34.7	43.7+31.0	49.9+38.3	38.2+14.0	45.1+6.3	32.5+28.0	38.4+37.8										
Self-Alignment																								
LLaMA-3-70B w/ Online DPO	80.2+2.4	85.6+1.8	86.7+2.5	90.4+1.6	71.0+10.3	67.2+6.7	66.2+5.1	64.6+2.9	63.5+3.2	66.5+5.6	61.6+1.4	80.7+0.2	92.7+0.1	78.7+0.0										

C-Eval MMLU GSM8k HumanEv


Results:

- 1. AUTOIF achieves up to 90.4% accuracy on IFEval and over 5% improvement on FollowBench.
- 2. No decline in other capabilities

Key Findings:

- 3. Online DPO outperforms Offline DPO by effectively targeting model weaknesses
- 4. Larger models (e.g., Qwen2-72B) show greater improvements.
- 5. Higher function pass rates lead to better performance.

Scaling Results

