

A Large-scale Training Paradigm for Graph Generative Models

Yu Wang¹

Ryan Rossi⁴

Namyong Park

Huiyuan Chen

Nesreen Ahmed⁵

Puja Trivedi³

Franck Dernoncourt⁴

Danai Koutra³

Tyler Derr²

KIND Lab¹, University of Oregon, NDS Lab², Vanderbilt University GEMS Lab³, University of Michigan Adobe Research⁴, Cisco AI Lab⁵

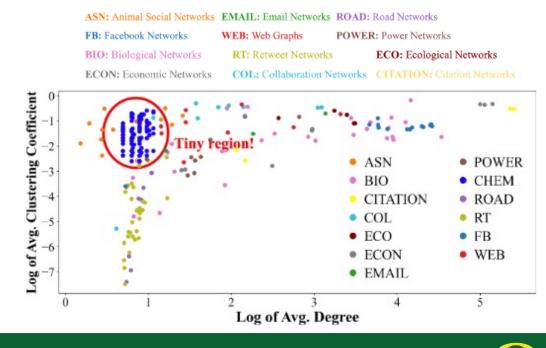
Background

Image

Language

Video

Audio



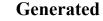
Previous Small Model (Limited Data)

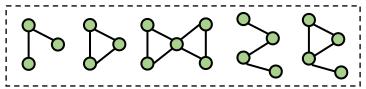
Recent Large Model (Sufficient well-curated Data)

How about graph generative models?

Туре	Model	# Domains	Multi-Domain Training	
Auto- Regressive	GraphRNN [69]	2	X	
	EdgeRNN [3]	3	X	
	MolRNN [46]	2	×	
VAE	MDVAE [13]	1	×	
	PCVAE [11 , 20]	3	×	
	(DE)CO-VAE [19]	1	×	
	GraphVAE [57]	1	×	
GAN	Mol-CycleGAN [40]	1	×	
	LGGAN [146]	2	×	
Flow	GraphNVP [38]	1	×	
	MoFlow [70]	1	×	
	GraphDF [36]	2	×	
Diffusion	GDSS [24]	3	×	
	DiGress [64]	2	×	
	GraphEBM [33]	1	×	

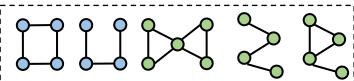
Our Large-scale Training Paradigm




Limited Data from one **Domain**

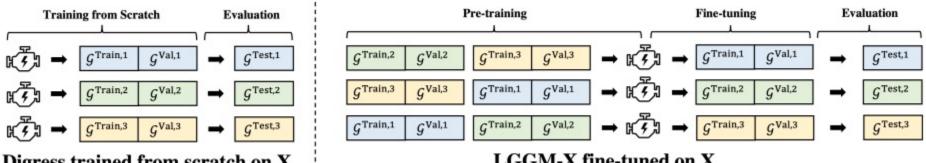
Sufficient Data from Diverse Domains

Previous



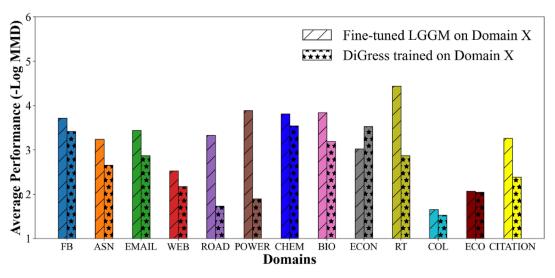
Generated

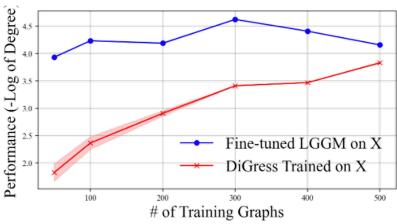
ANIMAL SOCIAL NETWORKS	816	☐ INTERACTION NETWORKS	29		11
BIOLOGICAL NETWORKS	37	▼ INFRASTRUCTURE NETWORKS	8	SOCIAL NETWORKS	77
BRAIN NETWORKS	116	NABELED NETWORKS	105	f FACEBOOK NETWORKS	114
COLLABORATION NETWORKS	20	MASSIVE NETWORK DATA	21	TECHNOLOGICAL NETWORKS	12
A CHEMINFORMATICS	646	MISCELLANEOUS NETWORKS	2669	₩ EB GRAPHS	36
55 CITATION NETWORKS	4	POWER NETWORKS	8	DYNAMIC NETWORKS	115
♣ ECOLOGY NETWORKS	6	PROXIMITY NETWORKS	13	TEMPORAL REACHABILITY	38
\$ ECONOMIC NETWORKS	16	SE GENERATED GRAPHS	221	m BHOSLIB	36
EMAIL NETWORKS	6	RECOMMENDATION NETWORKS	36	III DIMACS	78
F GRAPH 500	8	A ROAD NETWORKS	15	€ DIMACS10	84
HETEROGENEOUS NETWORKS	15	▼ RETWEET NETWORKS	34	■ NON-RELATIONAL ML DATA	211


Degree (DEG), Clustering Coefficient (CC)

$$\text{MMD}(\mathcal{G}_g, \mathcal{G}_r) = \frac{1}{m^2} \sum_{i,j=1}^m k(\mathbf{x}_i^r, \mathbf{x}_j^r) + \frac{1}{n^2} \sum_{i,j=1}^n k(\mathbf{x}_i^g, \mathbf{x}_j^g) - \frac{2}{nm} \sum_{i=1}^n \sum_{j=1}^m k(\mathbf{x}_i^g, \mathbf{x}_j^r) \qquad k(\mathbf{x}_i, \mathbf{x}_j) = \exp(-d(\mathbf{x}_i, \mathbf{x}_j)/2\sigma^2)$$

Experiment — Large-scale Training is Beneficial

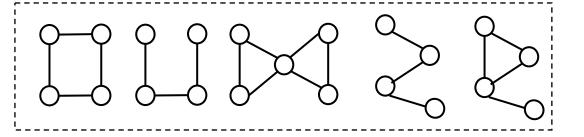




Digress trained from scratch on X

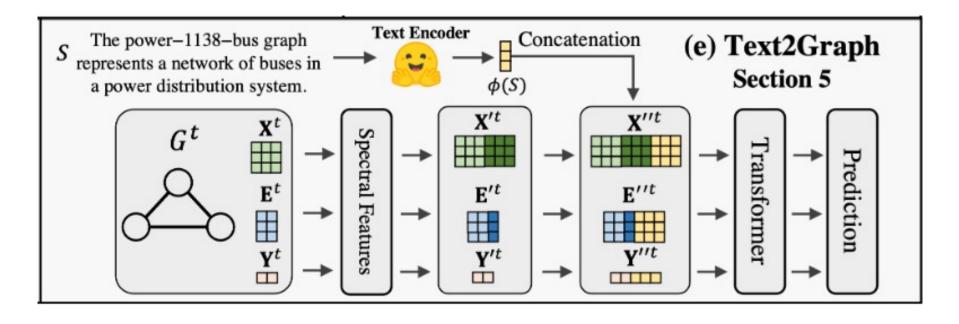
$$\Theta^{\star} = \underset{\Theta}{\operatorname{argmin}} \mathcal{L} = \mathbb{E}_{G \sim P(\mathbb{G})} \mathbb{E}_{t \sim \mathcal{T}} \mathbb{E}_{G^{t} \sim q(\mathbb{G}^{t}|\mathbb{G})} (-\log p_{\Theta}(G|G^{t}))$$

$$\Theta^{\star \star} = \underset{\Theta}{\operatorname{argmin}} \mathcal{L} = \mathbb{E}_{\widetilde{G} \sim P(\widetilde{\mathbb{G}})} \mathbb{E}_{t \sim \mathcal{T}} \mathbb{E}_{\widetilde{G}^{t} \sim q(\widetilde{\mathbb{G}}^{t}|\widetilde{\mathbb{G}})} (-\log p_{\Theta}(\widetilde{G}|\widetilde{G}^{t}))$$


Experiment – Text2Graph Generation

Images have their semanticmeaning for us to specify

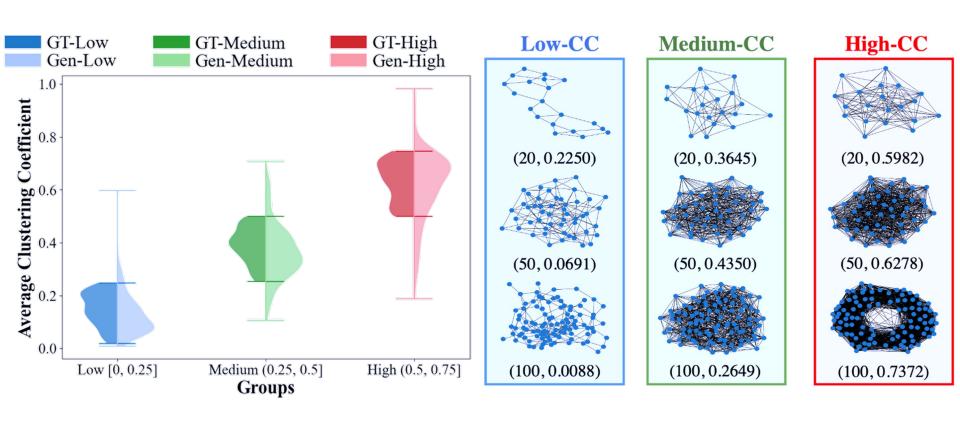
Generated Images are of Low-quality due to Online Free Version



Graphs have their own meta-data:
Degree/Density/Clustering
Coefficient/Domain...

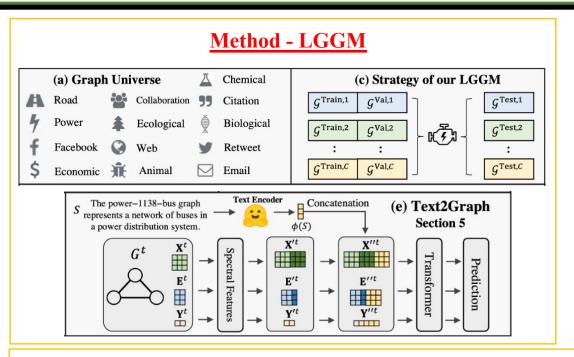
Experiment – Text2Graph Generation

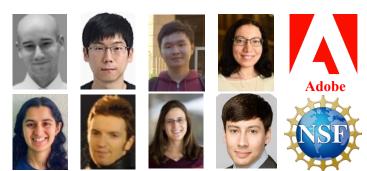
Pretrained encoder to obtain text embeddings


Fuse the text embeddings into the latent diffusion

Experiment – Text2Graph Generation

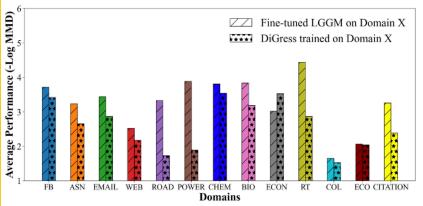
Control the Clustering Coefficient (somewhat # of triangles) in the graph

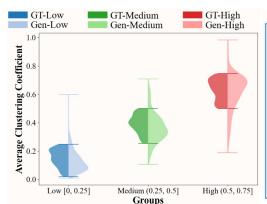


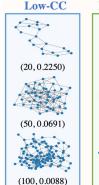

GT – Ground-truth ones

Gen – Generated ones

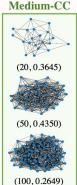
Summary of LGGM

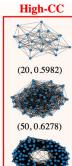





Knowledge Intelligence for Discovery and Decision making (KIND) Lab

https://kindlab-fly.github.io/


Better Generative Performance



Text-to-Graph Generation Control

(100, 0.7372)