

MR-GSM8K: A Meta Reasoning Benchmark for LLM Evaluation

Zhongshen Zeng

The department of Computer Sci & Erg

The Chinese University of Hong Kong

Supervisors: Prof Yu Bei & Prof. Jia Jia Ya

Background & Motivations

Current Evaluation Methods are limited

- Results oriented evaluation (e.g. Accuracy Metrics)
 - The final computation results can be generated via flawed reasoning paths
 - The scores can be inflated easily via data contamination
 - The design philosophy makes scaling benchmark difficult
- Saturations of benchmarks
 - Most well-recognized reasoning benchmarks are saturated

	Open source	Chinese General AlignBench	English General MT-Bench	Knowledge MMLU	Arithmetic GSM8K	Math MATH	Reasoning BBH	Coding HumanEval
DeepSeek-V2	Yes	7.89	8.85	80.6	94.8	71.0	83.4	84.8
GPT-4-Turbo-1106	-	8.01	9.32	84.6	93.0	64.1	-	82.2
GPT-4-0613	-	7.53	8.96	86.4	92.0	52.9	83.1	84.1
GPT-3.5	-	6.08	8.21	70.0	57.1	34.1	66.6	48.1

Meta-Reasoning

Process Oriented Evaluation: Meta-Reasoning

- From question-answering to solution-scoring
- Switch from the role of student to that of teachers
- Requires reason about reasonings, thus termed Meta-Reasoning
- Why Meta-Reasoning
 - Shifts the focus from computation results to the computation process
 - Robust against data-contamination and memorization
 - Inherently fitted for system-2 thinking evaluation
 - Relatively easy to scale the benchmarks
 - Far from saturations

MR-GSM8K: Dataset Construction

- 1. For each GSM8k problems, we collect:
 - original problem + CoT answer
 - reversed problem + CoT answer
 - original problem + PoT answer
- 2. Trained experts annotate the error analyses:
 - Answer Correctness
 - First error step
 - Error reason
 - Step correction

POT GSM8K

Instruction:

• An electronics seller bought 5 phones for \$700 each and gives the seller \$4000 in dollar bills. How much will the seller give back in change? Let's write a program.

Original GSM8K

Instruction:

 An electronics seller bought 5 phones for \$700 each and gives the seller \$4000 in dollar bills. How much will the seller give back in change?

REVERSED GSM8K

Instruction:

 An electronics seller bought 5 phones for \$700 each and gives the seller \$X in dollar bills. How much will the seller give back in change? If we know the answer to the above question is 500, what is the value of unknown variable 'X'?

Response:

- "Step 1: total amount paid = 5 * 700",
- "Step 2: total amount given = 4000",
- "Step 3: change = total amount given total amount paid",
- "Step 4: print(change)"

Response:

- "Step 1: The seller bought 5 phones for 5*700 = \$<<5*700=3500>>3500.",
- "Step 2:",
- "Step 3:.....".
- "Step 4: The seller will give back \$3500-\$4000 = \$<<3500-4000=500>>500 in change."

Response:

- "Step 1: The seller bought 5 phones for \$700 each, so.....",
- "Step 2: The seller gives the seller \$X in dollar bills, so",
- "Step 3:".
- "Step 4: Solving for X, we get: X = 4000.".
- "Step 5: The value of X is 4000.",

GPT4-Grading Output

- Wrong Step 3
- The student has misunderstood the concept of calculating change. It is not possible to get a negative change. Instead, the student should have checked if the total amount given was less than the total amount required and then calculated the additional amount required.

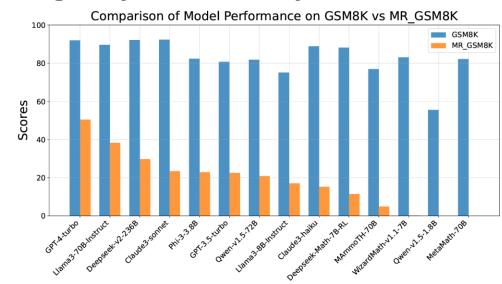
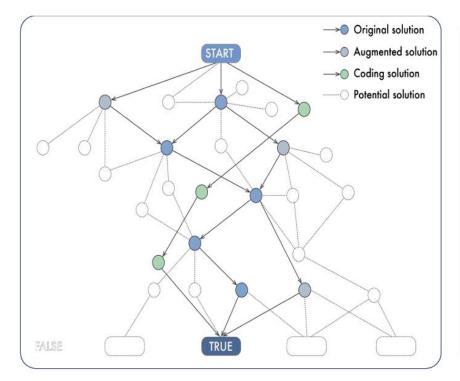
- Final Judgement: Correct

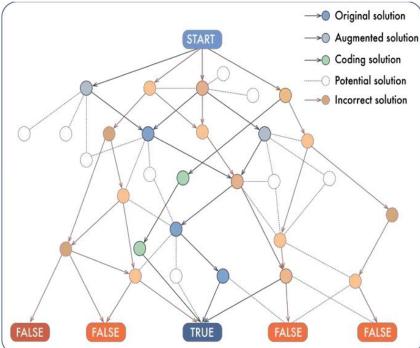
MR-Score

- LLMs will be given a question & candidate solution, and then:
 - Determine the solution correctness
 - If deemed incorrect, find the first error step and explain the error reason
- MR-Score: weighted metrics over three subtask performances
 - Accuracy of Solution Correctness: $MCC = \frac{TP \times TN FP \times FN}{\sqrt{(TP + FP) \times (TP + FN) \times (TN + FP) \times (TN + FN)}}$
 - Matthews Correlation Coefficient
 - Accuracy of locating first error step $ACC_{\text{step}} = \frac{N_{\text{correct_first_error_step}}}{N_{\text{incorrect_sols}}}$ $ACC_{\text{reason}} = \frac{N_{\text{correct_error_reason}}}{N_{\text{incorrect_sols}}}$
 - Accuracy of explaining the error reason
 - MR-Score: MR-Score = $w_1 * \max(0, MCC) + w_2 * ACC_{\text{step}} + w_3 * ACC_{\text{reason}}$
- Evaluation:
 - Solution correctness and incorrect first error step can be calculated automatically
 - Error reason explanation requires humans or machine scoring
 - 92 percent author-model agreement rates

Experiments

- O1 series of models are leading, showcasing the benefits of selfreflective long-CoT reasoning pattern
- Small models like Phi-3 are comparable to 70B models, indicating the importance of data quality and diversity


Table 2: Evaluation results on MR-GSM8K. SC-TPR and SC-TNR stand for the true positive and true negative rate for the solution correctness determination. K stands for number of demos in our prompts and bold number indicates the best performance within the corresponding model groups.

Model	SC-TPR		SC-	SC-TNR MCC		ACC	ACC_{step}		ACC_{reason}		MR-Score	
Model	k=0	k=3	k=0	k=3	k=0	k=3	k=0		k=0	k=3	k=0	k=3
Open-Source Small												
Qwen-1.8B	21.8	33.3	0.1	3.9	0.	0.	0.	0.4	0.	0.	0.	0.1
Phi3-3.8B	11.3	62.6	98.5	72.6	20.4	35.4	32.9	26.3	18.0	13.9	22.9	21.9
Open-Source Medium												
Deepseek-Math-7B-RL	77.3	2.4	52.3	0.4	30.4	0.	9.8	0.1	5.1	0.1	11.6	0.1
WizardMath-v1.1-7B	99.3	6.7	0.5	0.6	0.0	0.0	0.3	0.2	0.3	0.1	0.2	0.1
Llama3-8B	3.2	40.9	98.3	80.3	5.1	23.1	29.1	23.3	15.0	11.6	17.2	17.4
Open-Source Large												
MAmmoTH-70B	88.0	89.8	23.1	2.8	14.6	0.0	3.9	0.3	1.8	0.3	5.0	0.2
MetaMath-70B	7.8	0.0	0.3	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Llama3-70B	67.6	89.3	83.0	66.0	51.3	56.4	38.9	33.5	32.7	25.7	38.3	34.2
Qwen1.5-72B	83.7	87.7	57.1	52.4	42.0	42.5	19.1	23.1	13.5	15.8	20.9	23.3
Deepseek-v2-236B	60.1	88.2	87.2	61.5	49.4	51.2	26.8	32.4	23.8	28.3	29.8	34.1
Closed-Source LLMs												
Claude3-Haiku	70.4	99.0	51.7	8.1	22.5	16.7	17.2	2.3	11.3	1.8	15.3	4.9
GPT-3.5-Turbo	16.3	59.7	93.8	65.7	16.2	25.5	30.6	21.0	20.3	13.0	22.6	17.9
Claude3-Sonnet	35.1	88.4	89.8	44.8	30.0	36.5	25.2	18.8	19.9	15.6	23.5	20.8
GPT-4-Turbo	69.5	83.0	91.8	84.2	63.3	67.2	48.8	51.7	46.3	48.1	50.5	53.0
o1-mini-2024-09-12	93.3	93.3	95.6	94.8	89.0	88.1	67.6	67.6	62.2	61.8	69.2	68.8
o1-preview-2024-09-12	89.3	84.4	96.8	95.6	86.6	80.8	68.3	69.5	65.7	66.6	70.7	70.3

Meta-Reasoning Summary

- Meta-Reasoning and System-2 Thinking
 - More holistic and comprehensive coverage on solution space
 - Requires examination of assumptions/conditions/logic and even infer counterfactually
 - Exposes the shortcoming of current training pipeline
 - O1 style long-CoT data contains self-reflective, branching patterns

Thanks Q&A