Mini-batch Coresets for Memory-efficient Language Model Training on Data Mixtures

Dang Nguyen¹, Wenhan Yang¹, Rathul Anand¹, Yu Yang², Baharan Mirzasoleiman¹

Department of Computer Science, UCLA
 OpenAI

Training LLMs requires massive GPU memory

 Training an LLM with N billion parameters using mixed precision [1] requires 18N GB of GPU memory [2].

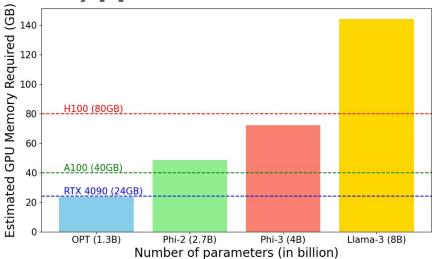
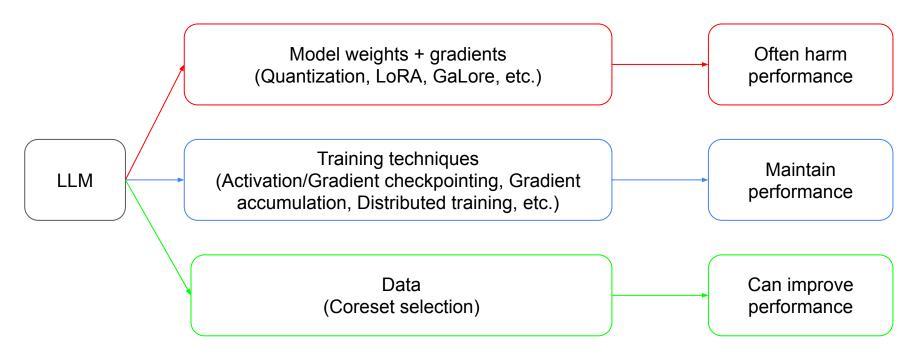


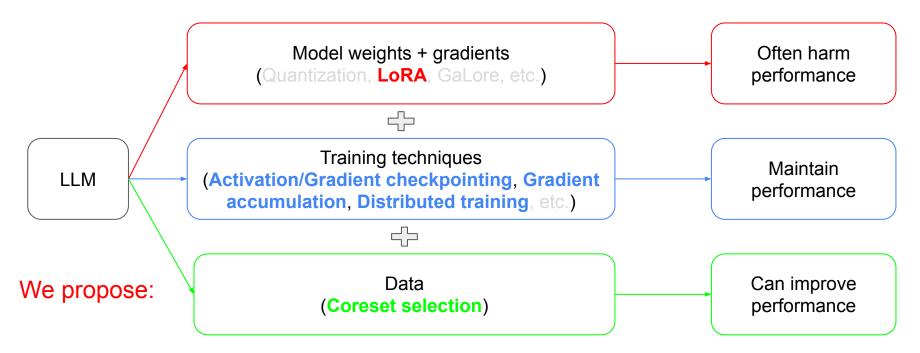
Figure 1. Estimated GPU memory requirement for training LLMs using mixed precision.

How to reduce GPU memory requirement?



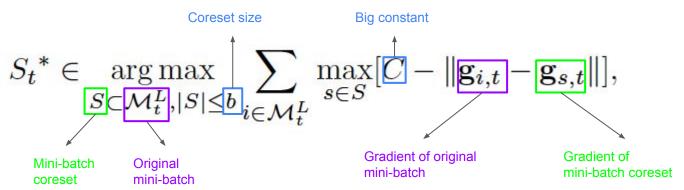
How to reduce GPU memory requirement?

It's possible to stack three different approaches together.



(Mini-batch) coreset selection

- Training with larger mini-batch has a small variance, thus convergences faster
 [3].
- A mini-batch coreset is a subset that has the similar gradient to the original mini-batch. Thus, it can be found by solving the gradient matching problem [4].



Challenges of coreset selection for training LLMs

- 1. Highly Imbalanced Language Data
- 2. Adam optimizer
- 3. Very Large Gradient Dimensionality

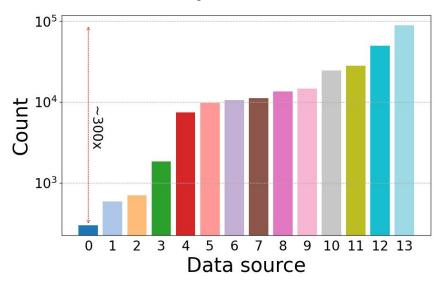
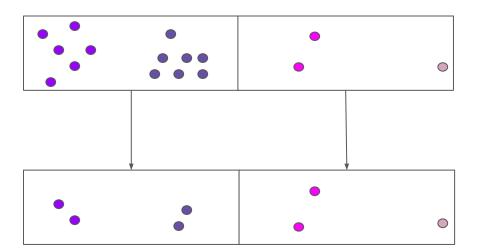


Figure 3. The number of samples from different data sources in MathInstruct.

- 1. A balanced sampling strategy
 - a. Keep all data from small sources
 - b. Select data from large sources

Original mini-batch

Mini-batch coreset



- 1. A balanced sampling strategy
 - a. Keep all data from small sources
 - b. Select data from large sources
- 2. Adam-like gradient normalization
 - a. Normalize gradient to mimic Adam updates

- A balanced sampling strategy
 - a. Keep all data from small sources
 - b. Select data from large sources
- 2. Adam-like gradient normalization
 - a. Normalize gradient to mimic Adam updates
- 3. Sparsified zeroth-order gradient estimation
 - a. Use zeroth-order to estimate gradient for only the last V-projection matrix
 - b. Sparisfy the gradient further by keeping only ~1% largest entities

Experimental results

CoLM yields the best of both worlds, increasing accuracy while reducing time & memory consumption.

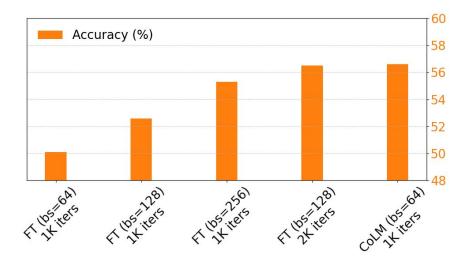


Figure 4. Time vs Accuracy vs Memory of fine-tuning Phi-2 with LoRA on MathInstruct.

Experimental results

CoLM yields the best of both worlds, increasing accuracy while reducing time & memory consumption.

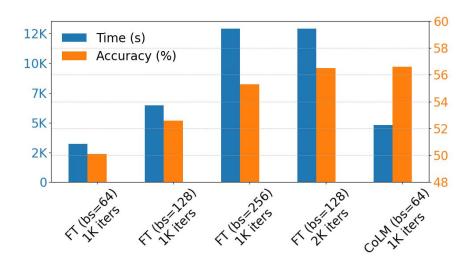


Figure 4. Time vs Accuracy vs Memory of fine-tuning Phi-2 with LoRA on MathInstruct.

Experimental results

CoLM yields the best of both worlds, increasing accuracy while reducing time & memory consumption.

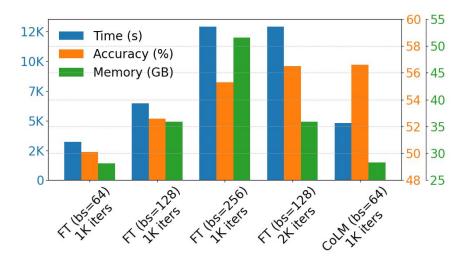


Figure 4. Time vs Accuracy vs Memory of fine-tuning Phi-2 with LoRA on MathInstruct.

Thank you! Please come visit our poster at Session 3: Fri 25 April 9 AM - 11:30 AM GMT+7