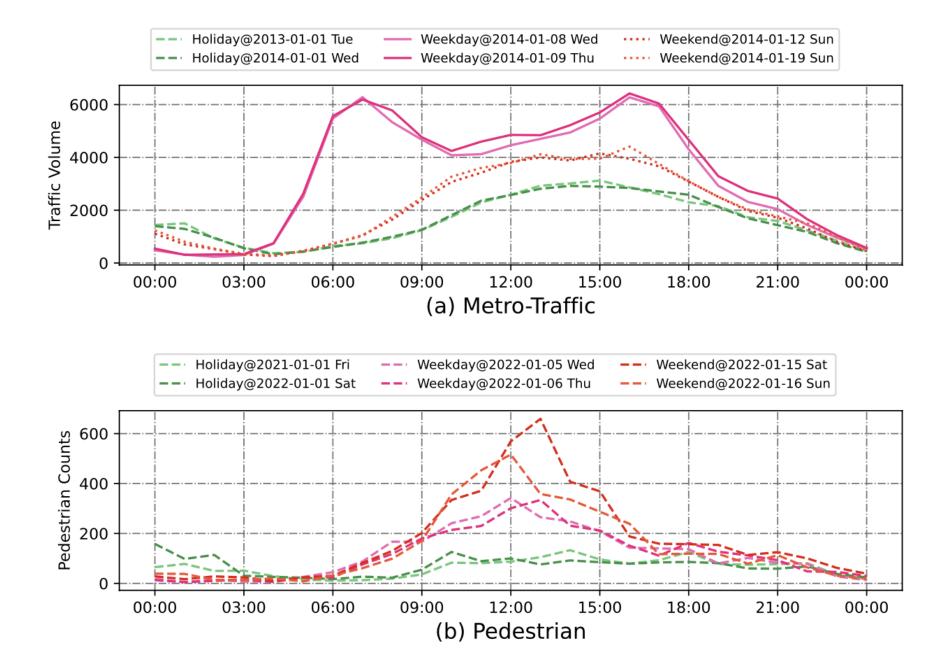


Investigating Pattern Neurons in Urban Time Series Forecasting


Chengxin Wang, Yiran Zhao, Shaofeng Cai, Gary Tan

National University of Singapore

Motivation

Urban time series data exhibits distinct patterns for high- and lowfrequency events:

- Patterns within each category remain consistent
- > Significant differences exist between categories, such as holiday, weekday, weekend patterns

- ☐ Do neurons associated with low-frequency patterns exist in UTSMs?
- ☐ If so, how can we enhance the representation learning of these neurons to improve urban time series forecasting

PN-Train - a pattern neuron-guided training method for

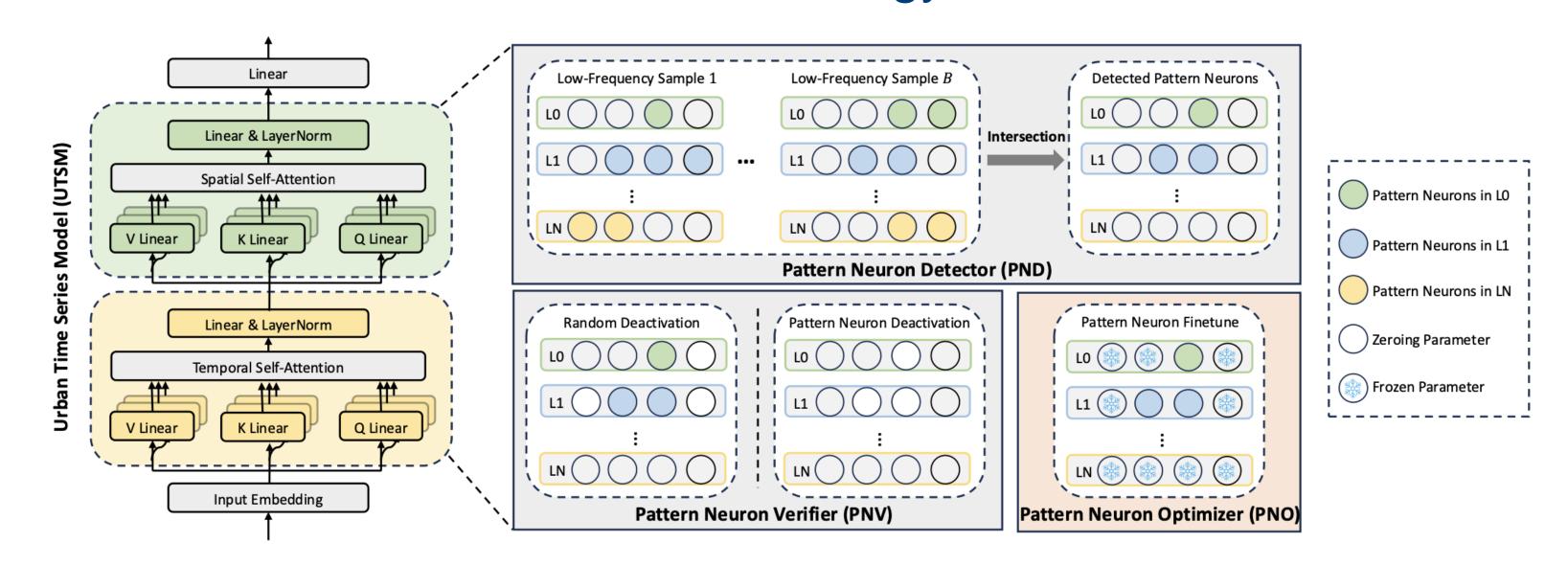
urban time series forecasting

- Investigates neurons associated with low-frequency patterns
- Detects them via a perturbation-based detector
- > Fine-tunes to enhance their representation

Algorithm

Algorithm 1: Pattern Neuron Guided Training Method

Input: The urban time series model UTSM; the training dataset \mathcal{D}_{train} and validation dataset \mathcal{D}_{val} ; the size of the detection sample B, and the size of the fine-tuning sample R; and the learning rates for training, α_1 , and fine-tuning, α_2 .


Output: The fine-tuned urban time series model UTSM

- // Process fine-tuning samples and training samples 1 $\mathcal{D}_{\text{finetune}} \leftarrow \text{RandomSample}(\{\mathbf{x} \in \mathcal{D}_{\text{train}} \mid \mathbf{x} \text{ is a low-frequency sample}\}, R)$
- 2 $\mathcal{D}_{\text{train}}$ $\leftarrow \mathcal{D}_{\text{train}} \setminus \mathcal{D}_{\text{finetune}}$
- // Train the urban time series model

3 repeat

- Randomly select a batch of instances S from $\mathcal{D}_{\text{train}}$,
- Optimize UTSM using AdamW with a learning rate of α_1 on batch S. 6 **until** met the stopping criteria;
- // Select detection samples and detect the pattern neurons 7 $\mathcal{D}_{\text{detect}} \leftarrow \text{RandomSample}(\{\mathbf{x} \in \mathcal{D}_{\text{train}} \mid \mathbf{x} \text{ is a low-frequency sample}\}, B)$
- 8 $\mathcal{N}^{p_l} \leftarrow \text{PND}(UTSM, \mathcal{D}_{\text{detect}})$ // Fine-tune the detected pattern neurons
- 9 $\hat{\mathbf{y}} \leftarrow UTSM(\mathcal{D}_{\text{finetune}}, \mathcal{N}^p)$
- 10 $\mathcal{L} \leftarrow \text{MAE}(\hat{\mathbf{y}}, \mathbf{y})$
- 11 Optimize pattern neurons \mathcal{N}^p using AdamW with a learning rate α_2 .
- // Return the fine-tuned UTSM
- 12 return UTSM

Methodology

Pattern Neuron Detector (PND)

Pattern neurons are those that contribute more significantly to forecasting targets in the perturbation assessment:

$$I(h_i^k|\mathbf{x}^p) = \|UTSM(\mathbf{x}^p, \mathbf{W}) - UTSM(\mathbf{x}^p, \mathbf{W} \setminus \mathbf{w}_i^k)\|_{1}$$

We devise an **attribute score** to quantify the influence of the k-th neurons for a specific pattern p given an input x^p with this pattern:

$$\operatorname{Attr}_p(h_i^k \mid \mathbf{x}^p) = \left\| \sum_{s,t} f(\mathbf{x}^p, oldsymbol{w}_i^k)_{s,t,:}
ight\|_1$$

Given a set of samples $\{x_1, x_2, ..., x_B\}$ corresponding to a specific pattern, the pattern neurons are those whose attribute scores remain high across all B samples:

$$\mathcal{N}^{p_l} = igcap_{b=1}^B \left\{ n_i^k \mid \operatorname{rank}(\operatorname{Attr}_p(h_i^k \mid \mathbf{x}_b^{p_l})) \leq \epsilon N, \quad orall i, k
ight\}$$

The detection process can be easily applied to self-attention layers:

$$\text{Attention}(\mathbf{x}) = \text{softmax} \left(Q(\mathbf{x}) K(\mathbf{x})^{\top} / \sqrt{d} \right) V(\mathbf{x}),$$

$$Q(\mathbf{x}) = f(\mathbf{x}, W_Q), \quad K(\mathbf{x}) = f(\mathbf{x}, W_K), \quad V(\mathbf{x}) = f(\mathbf{x}, W_V).$$

Pattern Neuron Verifier (PNV)

Prediction error increases significantly without pattern neurons:

$$\sum_{d=1}^{D} \left\| \mathbf{y}_d - \text{UTSM}(\mathbf{x}_d, \boldsymbol{W} \setminus \boldsymbol{w}_{\text{pattern}}) \right\|_1 \gg \sum_{d=1}^{D} \left\| \mathbf{y}_d - \text{UTSM}(\mathbf{x}_d, \boldsymbol{W} \setminus \boldsymbol{w}_{\text{random}}) \right\|_1$$

Pattern Neuron Optimizer (PNO)

Fine-tune only the pattern neurons using R samples corresponding to the interested pattern:

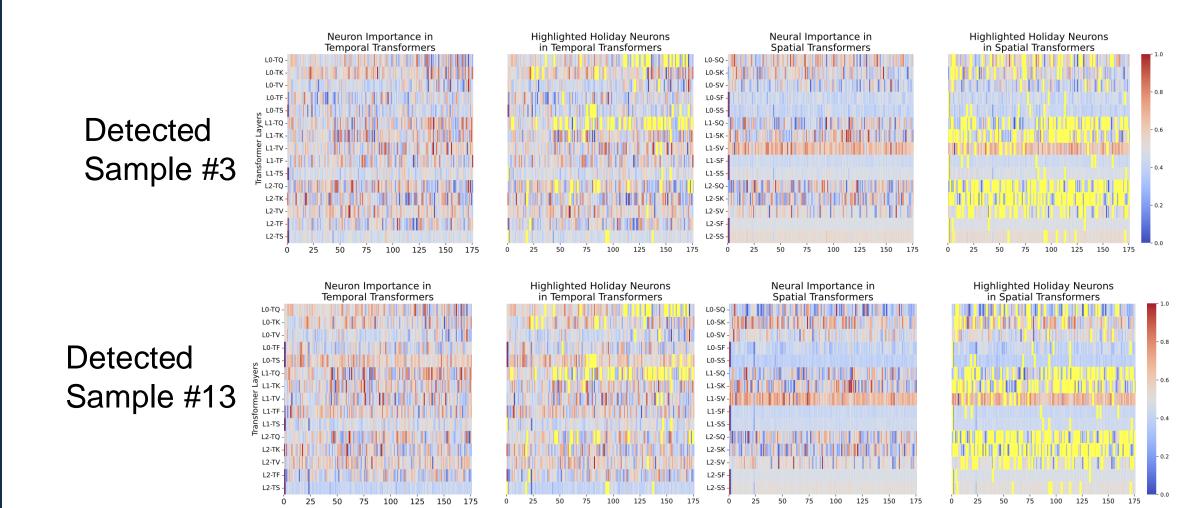
$$\mathcal{L}(\hat{\mathbf{y}},\mathbf{y} \mid heta_{oldsymbol{w}_{ ext{pattern}}}) = rac{1}{R} \sum_{r=1}^{R} \left\| \hat{\mathbf{y}}_r - \mathbf{y}_r
ight\|_1$$

Experiments & Model Analysis

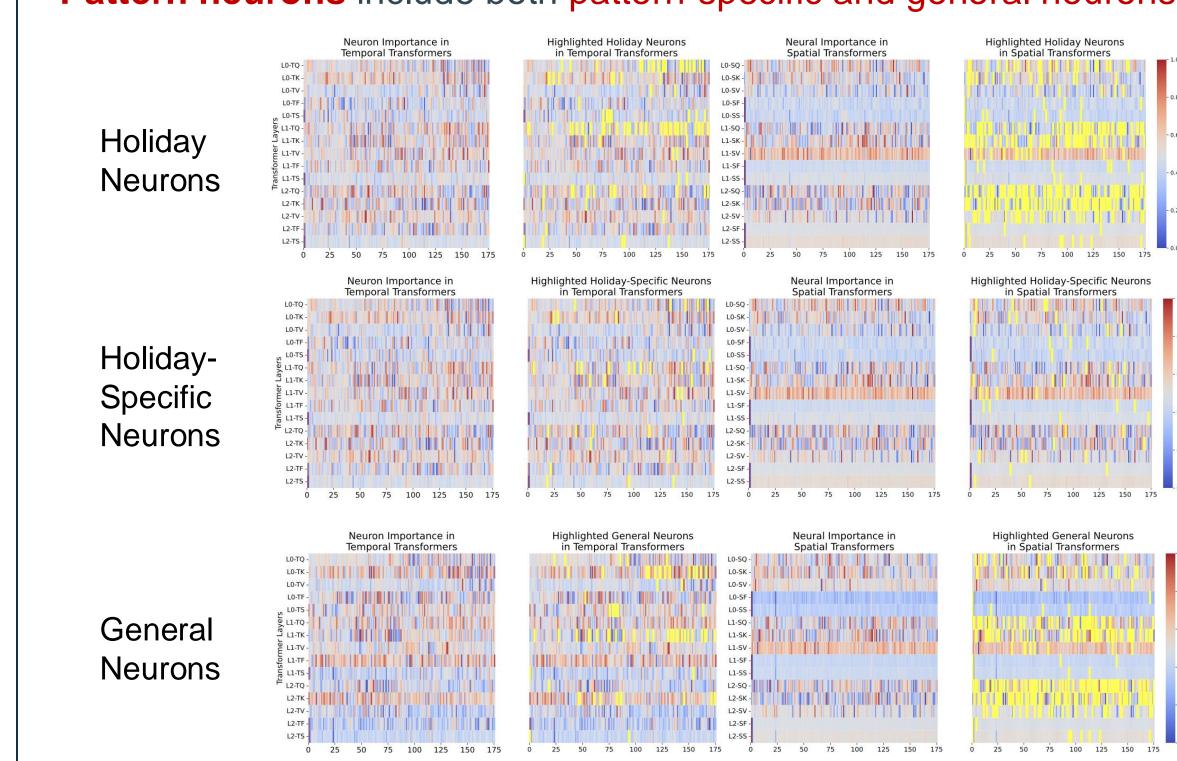
Existence of Pattern neurons in UTSMs:

- Deactivating pattern neurons yields a larger performance drop than random deactivation
- Pattern neurons make up <10% of all neurons

Model		Holiday]	Non-Holid	ay	Overall					
	MAE	RMSE	WMAPE	MAE	RMSE	WMAPE	MAE	RMSE	WMAPE			
Original D-Random	446.04 492.29	846.75 833.99	16.36% 18.05%	208.84 263.34	339.77 380.46	6.19% 7.80%	220.00 274.11	379.14 413.12	6.58% 8.19%			
D-PN	663.46 [†]	1046.40^{\dagger}	$24.33\%^\dagger$	474.02^{\dagger}	586.01^{\dagger}	$14.04\%^\dagger$	482.93^{\dagger}	615.44^{\dagger}	$14.43\%^{\dagger}$			
	Pedestrian (Deactivate ratio 9.77%)											
Model		Holiday]	Non-Holid	ay	Overall					
	MAE	RMSE	WMAPE	MAE	RMSE	WMAPE	MAE	RMSE	WMAPE			
Original	109.01	259.79	29.31%	78.82	196.39	21.70%	80.45	200.33	22.12%			
D-Random	116.99	264.03	31.46%	91.75	210.79	25.26%	93.12	214.01	25.60%			
	194.53 [†]	370.80^{\dagger}	$52.31\%^{\dagger}$	174.92^{\dagger}	321.45^{\dagger}	$48.15\%^{\dagger}$	175.98^{\dagger}	324.31^{\dagger}	$48.38\%^{\dagger}$			


Metro-Traffic (Deactivate ratio 7.76%)

Enhance the representation of pattern neurons associated with low-frequency events:


- Improves performance on low-frequency events
- Also benefits high-frequency events

Method		Holiday			1	Non-Holi	day	Overall			
		MAE	RMSE	WMAPE	MAE	RMSE	WMAPE	MAE	RMSE	WMAPE	
	НА	156.64	325.58	42.12%	128.28	270.90	35.31%	129.82	274.14	35.69%	
	STGCN (Yu et al., 2018)	460.97	739.63	16.91%	289.85	501.33	8.58%	297.90	515.02	8.90%	
jc	GWNet (Wu et al., 2019)	534.76	832.13	19.61%	347.50	582.90	10.29%	356.31	596.97	10.64%	
Traffic	AGCRN (Bai et al., 2020)	453.23	738.60	16.62%	280.41	496.75	8.31%	288.54	510.71	8.62%	
	STID (Shao et al., 2022)	586.90	1031.50	21.52%	216.09	346.81	6.40%	233.54	405.81	6.98%	
Metro-	PM-MemNet (Lee et al., 2022)	554.33	916.78	20.32%	375.88	666.90	11.13%	384.28	680.71	11.49%	
	STWA (Cirstea et al., 2022)	521.02	820.57	19.11%	355.63	619.28	10.53%	364.36	630.61	10.89%	
	STAEformer (Liu et al., 2023)	443.23	<u>821.42</u>	<u>16.25%</u>	210.41	343.01	6.23%	221.37	379.29	6.62%	
	TESTAM (Lee & Ko, 2024)	486.89	857.99	17.86%	335.05	555.09	9.92%	342.19	572.94	10.22%	
	PN-Train*	446.04	846.75	16.35%	<u>208.84</u>	<u>339.77</u>	<u>6.19%</u>	<u>220.00</u>	<u>379.14</u>	<u>6.58%</u>	
	PN-Train	430.40	816.50	15.78%	203.62	332.15	6.03%	214.29	369.46	6.40%	
	HA	208.49	388.17	64.48%	255.12	471.08	83.46%	253.24	468.01	82.69%	
	STGCN (Yu et al., 2018)	120.75	258.53	32.47%	101.61	214.32	27.97%	102.65	216.95	28.22%	
Pedestrian	GWNet (Wu et al., 2019)	119.77	267.48	32.21%	113.69	245.87	31.30%	114.02	247.09	31.35%	
	AGCRN (Bai et al., 2020)	118.48	267.32	31.86%	108.22	245.55	29.79%	108.78	246.78	29.91%	
	STID (Shao et al., 2022)	116.42	263.79	31.31%	85.32	206.36	23.49%	87.00	209.87	23.92%	
	PM-MemNet (Lee et al., 2022)	117.44	265.09	31.58%	112.18	246.64	30.88%	112.48	247.69	30.92%	
	STWA (Cirstea et al., 2022)	114.18	261.03	30.70%	106.62	234.88	29.35%	106.90	236.13	29.39%	
	STAEformer (Liu et al., 2023)	115.24	273.64	30.99%	82.23	202.73	22.64%	84.02	207.19	23.10%	
	TESTAM (Lee & Ko, 2024)	103.79	257.10	27.91%	94.04	219.46	25.89%	94.57	221.67	26.00%	
	PN-Train*	109.01	259.79	29.31%	<u>78.82</u>	<u>196.39</u>	<u>21.70%</u>	<u>80.45</u>	<u>200.33</u>	<u>22.12%</u>	
	PN-Train	<u>106.11</u>	<u>253.86</u>	<u>28.54%</u>	78.35	194.72	21.57%	79.85	198.38	21.95%	

Pattern neurons appear in similar positions & more concentrated on query and key components

Pattern neurons include both pattern-specific and general neurons

PN-Train can be generalized to multiple low-frequency patterns

	Method	Holiday		Parade			Others			Overall			
	1,1011100	MAE	RMSE	WMAPE	MAE	RMSE	WMAPE	MAE	RMSE	WMAPE	MAE	RMSE	WMAPE
	HA	55.63	76.11	14.88%	48.09	62.53	13.03%	52.13	77.60	16.88%	52.18	77.55	16.83%
	STGCN	38.74	54.67	10.36%	27.52	37.28	7.46%	29.58	45.18	9.57%	29.72	45.33	9.59%
	GWNet	42.75	61.67	11.44%	27.69	38.10	7.50%	31.04	47.88	10.05%	31.22	48.12	10.07%
AP	AGCRN	38.61	54.26	10.33%	26.18	35.19	7.10%	28.81	44.17	9.33%	28.96	44.34	9.34%
	STID	38.25	54.29	10.23%	26.28	34.84	7.12%	25.43	39.85	8.23%	25.64	40.11	8.27%
GB	PM-MemNet	34.97	49.23	9.36%	26.41	35.82	7.16%	29.00	43.85	9.39%	29.09	43.93	9.39%
	STWA	40.53	58.04	10.84%	25.66	35.22	6.95 %	30.75	46.90	9.96%	30.86	47.01	9.96%
	STAEformer	32.39	45.65	8.67%	27.08	37.20	7.68%	25.33	39.92	8.20%	25.45	40.01	8.21%
	TESTAM	33.86	48.04	9.06%	31.98	45.34	8.66%	28.08	43.52	9.09%	28.18	43.60	9.09%
	PN-Train	32.25	45.44	8.62%	26.73	36.68	7.24%	25.25	39.81	8.18%	25.37	39.90	8.18%