

ARB-LLM: Alternating Refined Binarizations For Large Language Models

Zhiteng Li^{1*}, Xianglong Yan^{1*}, Tianao Zhang¹, Haotong Qin², Dong Xie³, Jiang Tian³, Zhongchao Shi³, Linghe Kong^{1†}, Yulun Zhang^{1†}, Xiaokang Yang¹

¹Shanghai Jiao Tong University, ²ETH Zürich, ³Lenovo Research

Introduction

Observation

- 1. Distribution shift occurs after asymmetric binarization.
- 2. The optimization of binarization parameters μ and α does not adequately reflect the real-world scenario, as it does not account for the **input data X**.
- 3. Row-wise binarization is not effective at handling column-wise deviations.

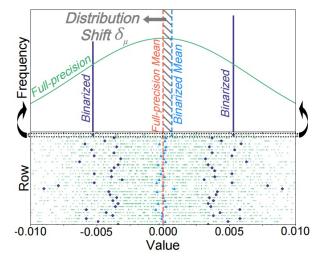


Figure: **Top:** distribution shift of one row. **Bottom:** distribution shifts of multiple rows.

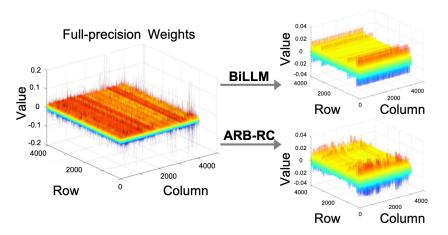
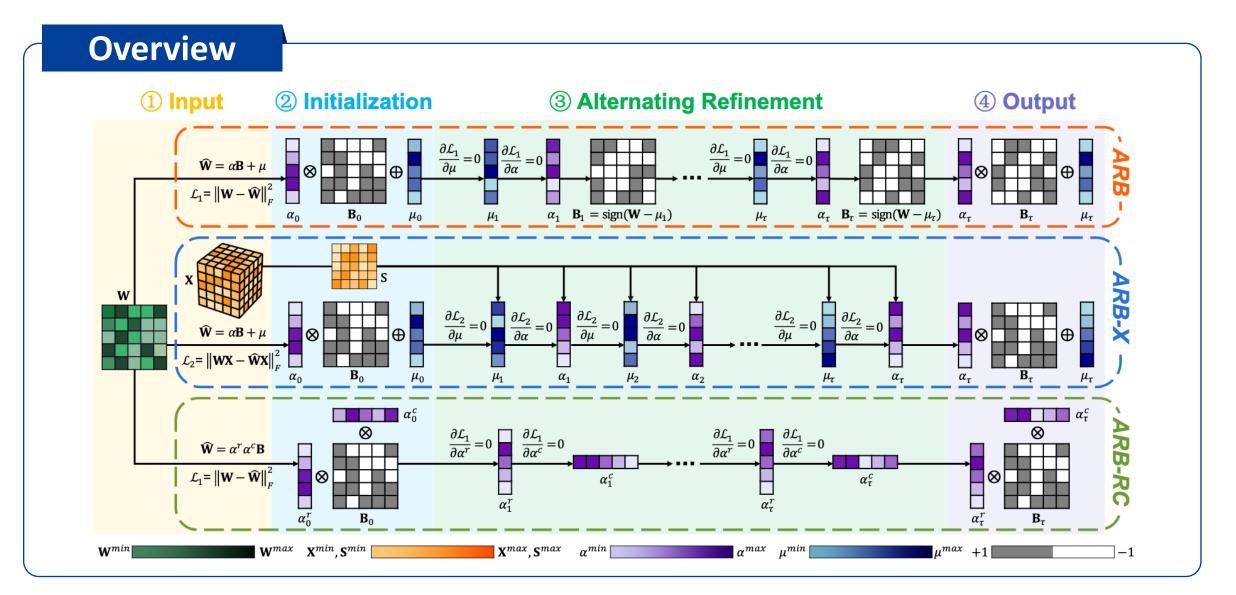


Figure: BiLLM [1] with row-wise binarization smooths the deviations. Our ARB-RC with row-column-wise binarization effectively preserves them.



Alternating Refined Binarization (ARB)

1st-order ARB

Alternating Refine

Refine zero-point (compensate distribution shift):

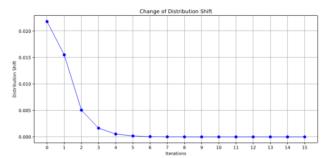
$$\mu \leftarrow \mu + \delta_{\mu}$$
, where $\delta_{\mu} \coloneqq \text{mean}(\mathbf{R})$

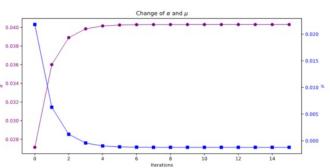
2 Refine scale:

$$\alpha \leftarrow \frac{1}{m} \mathbf{B}^{\mathsf{T}} (\mathbf{W} - \mu)$$

3 Refine binary matrix:

$$\mathbf{B} \leftarrow \operatorname{sign}(\mathbf{W} - \mu)$$





Theorem 1. For any $\tau \geq 0$, Algorithm 1 achieves a quantization error \mathcal{L}_1^{τ} satisfying

$$\mathcal{L}_1^{\tau} = \mathcal{L}_1^0 - m((\alpha^{\tau})^2 - (\alpha^0)^2 - (\mu^{\tau} - \mu^0)^2) \le \mathcal{L}_1^0, \tag{5}$$

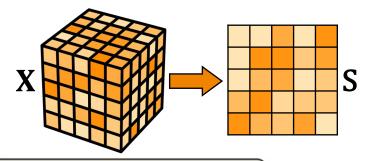
where α^0 and μ^0 denote the initial scaling factor and mean respectively, α^{τ} , μ^{τ} , and \mathcal{L}_1^{τ} represent the scaling factor, mean, and quantization error after the τ -th iteration respectively.

ARB with Calibration Data (ARB-X)

- Quantization Error
 - weight-only: $\mathcal{L}_1 = \left\| \mathbf{W} \widehat{\mathbf{W}} \right\|_F^2$

Decoupling is needed to avoid re-computation and save memory!

- weight-activation: $\mathcal{L}_2 = \|\mathbf{W}\mathbf{X} \widehat{\mathbf{W}}\widehat{\mathbf{X}}\|_F^2$, where $\mathbf{X} \in \mathbb{R}^{B \times L \times m}$ is a small <u>calibration set</u>.
- Reformulation of \mathcal{L}_2
 - Let $\mathbf{S} = \sum_{b} \mathbf{X}_{b}^{\mathsf{T}} \mathbf{X}_{b}$ and $\mathbf{R} = \mathbf{W} \mu \alpha \mathbf{B}$, where $\mathbf{S} \in \mathbb{R}^{m \times m}$.
 - Then $\mathcal{L}_2 = \|\mathbf{W}\mathbf{X} \widehat{\mathbf{W}}\mathbf{X}\|_F^2 = \langle \mathbf{S}, \mathbf{R}^\mathsf{T}\mathbf{R}\rangle_F = \mathrm{Tr}(\mathbf{R}\mathbf{S}\mathbf{R}^\mathsf{T}).$



Theorem 2. The speedup ratio η of the reformulation compared to the original method is

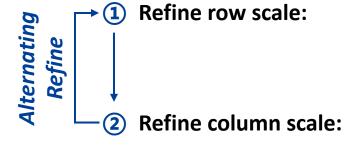
$$\eta \propto \frac{1}{k \cdot \left(\frac{1}{n \cdot T} + \frac{1}{B \cdot L}\right)},$$
(10)

where n is the hidden dimension of \mathbf{W} , k is the block size, and T is the number of iterations.

ARB along Row-Column Axes (ARB-RC)

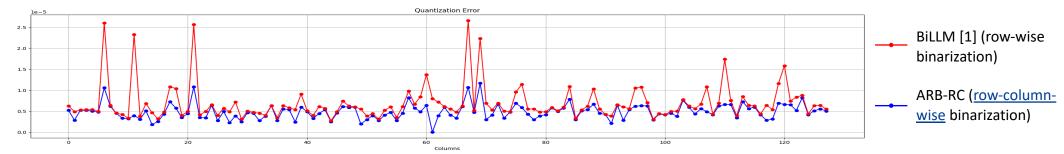
- 1st-order ARB-RC
 - **(** Initialize binary matrix (<u>unchanged</u>):

$$\mathbf{B} \coloneqq \operatorname{sign}(\mathbf{W})$$



$$\alpha^r \leftarrow \frac{\operatorname{diag}(\mathbf{W}(\alpha^c \mathbf{B})^\top)}{\operatorname{diag}((\alpha^c \mathbf{B})(\alpha^c \mathbf{B})^\top)} \qquad \frac{\partial \mathcal{L}_1}{\partial \alpha^r} = \mathbf{0}$$

$$\alpha^c \leftarrow \frac{\operatorname{diag}(\mathbf{W}^{\mathsf{T}}(\alpha^r \mathbf{B}))}{\operatorname{diag}((\alpha^r \mathbf{B})^{\mathsf{T}}(\alpha^r \mathbf{B}))} \longrightarrow \frac{\partial \mathcal{L}_1}{\partial \alpha^c} = 0$$



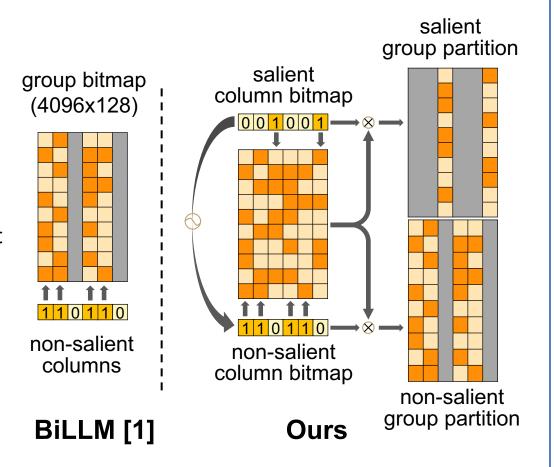
Column-Group Bitmap (CGB)

- Salient and Non-salient Weights (column bitmap)
 - **Hessian matrix** is used to identify salient weights:

$$s_i = \frac{w_i^2}{[\mathbf{H}^{-1}]_{ii}^2}.$$

- Columns with higher s (salient columns) are quantized by <u>2nd-order binarization</u>, while non-salient columns are quantized by <u>1st-order binarization</u>.
- Sparse and Concentrated Groups (group bitmap)
 - Both salient and non-salient weights are further divided into 2 groups by their magnitude:

$$\mathbf{G}_{\mathbf{s}} = \mathbf{1}_{n} \mathbf{C}_{\mathbf{s}}^{\mathsf{T}} \odot \mathbf{G}, \qquad \mathbf{G}_{\mathbf{n}\mathbf{s}} = \mathbf{1}_{n} \mathbf{C}_{\mathbf{n}\mathbf{s}}^{\mathsf{T}} \odot \mathbf{G}$$



Text Generation

Table 2: Perplexity of RTN, GPTQ, PB-LLM, BiLLM, and our methods on LLaMA family. The columns represent the perplexity results on **WikiText2** dataset with different model sizes. N/A: LLaMA-2 lacks a 30B version, and LLaMA-3 lacks both 13B and 30B versions. *: LLaMA has a 65B version, while both LLaMA-2 and LLaMA-3 have 70B versions.

Model	Method	Block Size	Weight Bits	7B/8B*	13B	30B	65B/70B*
	Full Precision	-	16.00	5.68	5.09	4.10	3.53
	RTN	-	3.00	25.54	11.40	14.89	10.59
	GPTQ	128	3.00	8.63	5.67	4.87	4.17
	RTN	-	2.00	106,767.34	57,409.93	26,704.36	19,832.87
	GPTQ	128	2.00	129.19	20.46	15.29	8.66
LLaMA	RTN		1.00	168,388.00	1,412,020.25	14,681.76	65,253.24
	GPTQ	128	1.00	164,471.78	131,505.41	10,339.15	20,986.16
	PB-LLM	128	1.70	82.76	44.93	23.72	12.81
	BiLLM	128	1.09	49.79	14.58	9.90	8.37
	$\bar{A}\bar{R}\bar{B}-\bar{L}\bar{L}\bar{M}_{X}^{-}$	128	1.09	21.81	11.20	8.66	7.27
	ARB-LLM _{RC}	128	1.09	14.03	10.18	7.75	6.56

Q&A Datasets

- ARB-LLM outperforms <u>binary PTQ methods</u> PB-LLM and BiLLM.
- ARB-LLM also surpasses <u>2-bit quantization method</u> GPTQ.

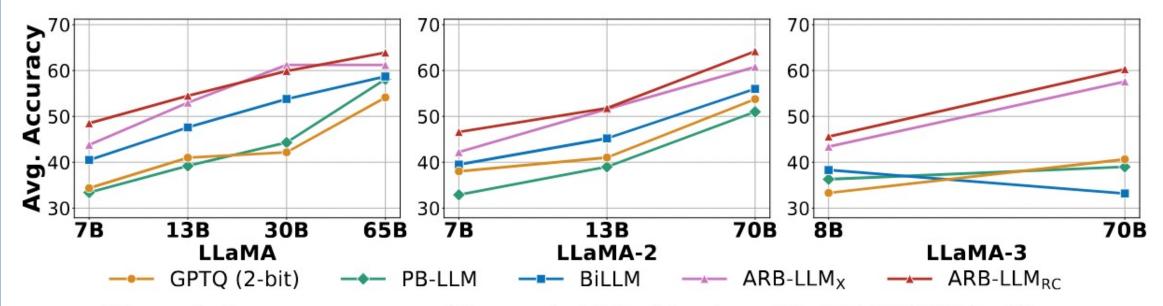


Figure 6: Average accuracy of 7 zero-shot QA datasets on LLaMA1&2&3 families.

Ablation Study

- a) ARB-X and ARB-RC improve upon the base ARB.
- b) CGB enhances the basic bitmap used in BiLLM.
- c) Column bitmap and group bitmap in CGB significantly impact the performance.
- d) ARB-X remains stable across varying calibration set sizes.
- e) ARB-LLM performs well with only a few iterations.
- f) More groups lead to better performance.

Table 4: Ablation study on LLaMA-7B, where all ARB methods are equipped with CGB except for ablation (b). Results are measured by perplexity, with final results highlighted in **bold**.

(a) Effectiveness of two advanced variants

Method	Calibration Row-column update update		WikiText2↓	C4 ↓	
BiLLM		-	49.79	46.96	
ARB	X	X	22.67	26.44	
ARB-LLM _X	/	×	21.81	22.73	
ARB-LLM _{RC}	×	✓	14.03	17.92	

(c) Study of decoupling column and group bitmaps

Method	Column bitmap	Group bitmap	WikiText2↓	C4 ↓
ARB-LLM _{RC}	Х	Х	10,942.45	11,032.93
$ARB-LLM_{RC}$	/	X	369.20	205.56
ARB-LLM _{RC}	×	✓	920.42	572.69
ARB-LLM _{RC}	✓	✓	14.03	17.92

(e) Study of ARB-LLM iteration number

Method	#Iteration	WikiText2↓
BiLLM	0	49.79
ARB-LLM _X ARB-LLM _{RC}	1/3/15 1/3/15	22.59 / 21.12 / 21.81 15.23 / 14.34 / 14.03

(b) Effectiveness of CGB

Method	CGB	WikiText2↓	C4 ↓
BiLLM	-	49.79	46.96
ARB-LLM _X	×	26.29	27.11
ARB-LLM _X	1	21.81	22.73
ARB-LLM _{RC}	X	15.85	19.42
$ARB-LLM_{RC}$	1	14.03	17.92

(d) Study of ARB-LLM_X calibration set size

Method	Calibration set size	WikiText2 \downarrow	C4 ↓
BiLLM	128	49.79	46.96
ARB-LLM _X	64	24.79	25.11
ARB-LLM _X	128	21.81	22.73
$ARB-LLM_X$	256	21.88	24.28

(f) Study of ARB-LLM group number

Method	#Group	WikiText2↓	C4 ↓
BiLLM	2	49.79	46.96
ARB-LLM _X	2/4	21.81 / 6.55	22.73 / 8.56
$ARB-LLM_{RC}$	2/4	14.03 / 12.77	17.92 / 16.06

Time and Memory

Quantization Time

- ARB-LLM requires <u>only a few additional minutes</u>, yet delivers significant improvements.
- ARB-LLM_X takes more time due to the integration of calibration data.

Compressed Memory

 Although CGB requires more memory due to more scaling factors, the combination of ARB-RC and CGB still results in *lower storage requirements than BiLLM*.

Table 5: Time comparison between BiLLM and our ARB-LLM methods on LLaMA-7B.

Method	CGB	#Iter=1	#Iter=3	#Iter=15
BiLLM	112	45	min (#Ite	er=0)
ARB-LLM _X	×	52 min	59 min	70 min
$ARB-LLM_X$	1	72 min	78 min	88 min
$ARB-LLM_{RC}$	X	48 min	49 min	53 min
$ARB-LLM_{RC}$	/	67 min	68 min	76 min

Table 6: Memory comparison between FP16, PB-LLM, BiLLM, and our ARB-LLM methods.

Method	CGB	LLaMA-7B	LLaMA-13B
FP16		13.48 GB	26.03 GB
PB-LLM	-	2.91 GB	5.33 GB
BiLLM		2.93 GB	5.36 GB
ARB-LLM _X	×	2.93 GB	5.36 GB
$ARB-LLM_X$	1	3.23 GB	5.95 GB
$ARB-LLM_{RC}$	X	2.63 GB	4.77 GB
$ARB-LLM_{RC}$	✓	2.83 GB	5.17 GB

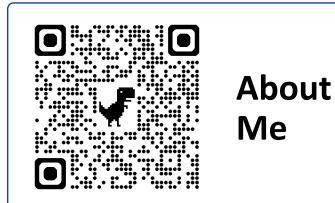
Conclusion

Contribution

- We propose ARB-LLM, a novel binarization framework with <u>theoretical analyses</u> for LLMs.
 - Based on ARB, we develop two advanced extensions: ARB-X and ARB-RC.
 - We propose **CGB**, which improves the bitmap utilization and enhances the performance.
- ARB-LLM_{RC} <u>outperforms SOTA</u> binary PTQ methods while requiring <u>less memory</u>.

Poster

Time: Thu 24 Apr
 3 p.m. – 5:30 p.m. CST



Thanks!