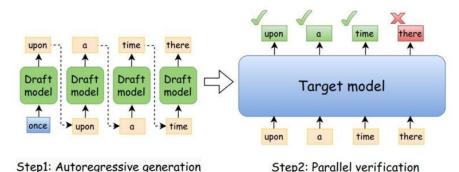


Optimized Multi-Token Joint Decoding with Auxiliary Model for LLM Inference

LLM has become increasingly more popular

However, the time and energy consumption of LLM inference also increases significantly.


Left figure is from https://www.researchgate.net/figure/Number-of-parameters-of-LLM-over-the-past-five-years-Significant-advances-were-made-by fig1 377469845

Right figure is from https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-reasoning-llms

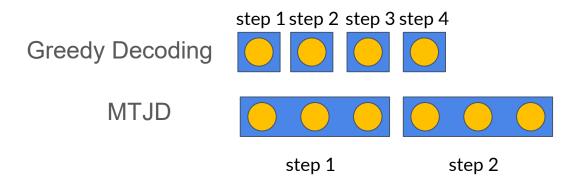
Speculative Decoding (SpD)

- •Speculative decoding accelerates LLM inference speed by exploiting a small auxiliary LM.
- •The small LM generates K draft tokens, then the large LM **verifies them in parallel**, and re-samples the first rejected token.

This figure is from https://medium.com/@genai.works/speed-up-llm-inference-with-speculative-decoding-1fc79701e9d6

SpD vs Our Goal

SPECULATIVE DECODING


- Energy Efficiency > Greedy Decoding
- Time Efficiency > Greedy Decoding
- Output Quality = Greedy Decoding

OUR GOAL

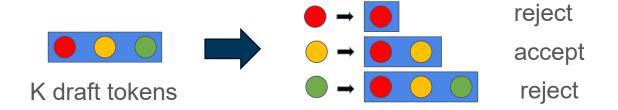
- Energy Efficiency > Greedy Decoding
- Time Efficiency > Greedy Decoding
- Output Quality > Greedy Decoding

Multi-Token Joint Decoding (MTJD)

- MTJD selects multiple token based their joint conditional likelihood.
- Better effectiveness than greedy decoding.
- However, it is not efficient.
 - Solution: Speculative Decoding

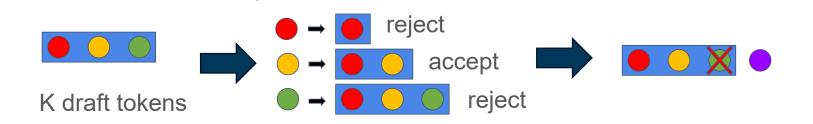
Multi-Token Assisted Decoding (MTAD)

Small model generates *K* draft tokens via beam sampling


K draft tokens

Multi-Token Assisted Decoding (MTAD)

Accept each prefix sub-sequence iff $\frac{p(x_{1:k})}{q(x_{1:k})} \ge \tau$


p: target distribution, q: draft distribution, τ : pre-defined threshold

Multi-Token Assisted Decoding (MTAD)

Select the longest accepted sequence and sample an additional token from target distribution p.

The perplexity ratio between approximate MTAD and exact MTJD can be bounded.

Experiment

Target and Draft Models

- > Llama-3 (8B, 1B)
- ➤ Llama-3-Instruct (8B, 1B)

Datasets

- Spider (text-to-SQL)
- MTBench (various tasks)
- HumanEval (coding)

Metrics

- Speed (tokens/s)
- Energy (J/token)
- Output Quality
 - Spider: Execution accuracy
 - MT-Bench: LLM-evaluated score
 - HumanEval: Pass@1

Experiment Results

Compared to SpD, MTAD

- ✓ Improve output quality by **25**%
- ✓ Achieve 1.42x speed-up
- ✓ Consume **1.54x** less energy

	Lossy Decoding		Lossless Decoding				Ours
	BiLD	Typical	SpD	Spectr	SpecInfer	MCSS	MTAD
]	Human	Eval			
Llama-3-Instruct	t						
tokens/s ↑	17.4	21.7	22.2	23.8	22.8	23.7	24.8
J/token↓	10.0	8.1	7.8	7.8	7.9	7.8	7.6
pass@1↑	<u>37.8</u>	35.9	32.9	32.9	31.0	32.0	38.4
Llama-3							
tokens/s ↑	19.6	22.5	22.2	24.4	22.5	23.8	25.6
J/token↓	9.7	8.9	8.9	8.9	8.1	7.9	7.6
pass@1↑	19.5	<u>20.0</u>	15.9	16.0	17.7	17.0	22.0
			Spide	er			
Llama-3-Instruct	t						
tokens/s ↑	20.1	22.3	19.6	22.4	21.1	21.7	23.5
J/token↓	10.2	<u>9.5</u>	10.5	9.6	10.2	10.0	9.2
$Acc \uparrow$	35.0	<u>42.0</u>	36.0	35.5	37.0	35.0	44.0
Llama-3							
tokens/s ↑	23.3	32.3	31.1	32.1	32.6	<u>32.7</u> ↓	33.3
J/token	8.2	7.9	<u>7.5</u>	7.1	8.1	8.0	7.8
$Acc\uparrow$	<u>30.5</u>	29.5	21.5	23.0	21.5	24.0	35.0
			MT-Be	nch			
Llama-3-Instruct	t						
tokens/s ↑	25.9	23.4	26.0	26.2	26.3	<u>26.8</u> ↓	29.8
J/token↓	10.8	12.2	10.0	9.9	10.0	9.9	9.2
score ↑	4.15	<u>4.26</u>	4.10	4.11	4.01	4.02	4.40
Llama-3							
tokens/s ↑	24.5	22.3	24.1	24.5	24.5	<u>25.7</u>	28.2
J/token↓	11.5	12.4	<u>11.0</u>	11.6	11.7	11.1	10.0
$score \uparrow$	<u>3.41</u>	3.24	3.39	3.41	3.35	3.36	3.75

Thank You

