

On the Crucial Role of Initialization for Matrix Factorization and LoRA

Bingcong Li¹

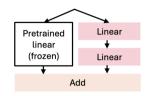
Liang Zhang¹, Aryan Mokhtari², Niao He¹

¹ETH Zurich, ²University of Texas at Austin

ICLR 2025 Singapore

A recap of low-rank adapters (LoRA)

- ☐ LoRA¹ recap
 - The default choice for PEFT of LLMs
 - Trainable parameters per layer $\mathcal{O}(mn) \to \mathcal{O}((m+n)r)$
 - Great savings in memory and training time
 - Scalable to serve on various downstream tasks



Optimization: $\min_{\{\mathbf{X}_i,\mathbf{Y}_i\}} f(\{\mathbf{W}_i + \mathbf{X}_i\mathbf{Y}_i^{\top}\}_i)$

- A precursor to LoRA in the pre-LLM era: Burer-Monteiro (BM) factorization²
 - Large-scale semidefinite programmings (SDPs)
 - Matrix factorization, sensing, and completion problems
- ☐ Goal: To reveal the underlying optimization dynamics of LoRA, identify its limitations, and propose solutions

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, LoRA: Low-rank adaptation of large language models ICLR 2022

S. Burer, R.D. Monteiro. A nonlinear programming alg. for solving SDPs via low-rank factorization. MP 2003

Matrix factorization as a proxy for LoRA optimization

☐ Matrix factorization for understanding LoRA dynamics

$$\textbf{Symmetric:} \quad \min_{\mathbf{X} \in \mathbb{R}^{m \times r}} \frac{1}{4} \|\mathbf{X}\mathbf{X}^{\top} - \mathbf{A}\|_{\mathsf{F}}^{2}$$

$$\textbf{Asymmetric:} \quad \min_{\mathbf{X} \in \mathbb{R}^{m \times r}, \mathbf{Y} \in \mathbb{R}^{n \times r}} \frac{1}{2} \| \mathbf{X} \mathbf{Y}^\top - \mathbf{A} \|_{\mathsf{F}}^2$$

- Whitened data: A is the cross-covariance between original features and labels¹
- A "reversed" view: given one-hot features, generate features
- Exact-, over-, under- parametrization (EP, OP, UP) when $rank(\mathbf{A}) = , <, > r$
- While solvable, solving them is not the central focus
- ☐ (Minor) challenges for quartic optimization
 - Commonly adopted assumptions are not satisfied (globally)

Example:
$$f(x, y) = (xy - 1)^2$$

- Non-convexity
- Non-smoothness: Hessian at x = 0 is $[y^2, -1; -1, 0]$
- Polyak-Lojasiewicz (PL) condition cannot be met due to existence of saddles

Matrix factorization/LoRA optimized via ScaledGD

- ☐ We will only talk about symmetric problem for simplicity
 - Our results extend to asymmetric problems

$$\min_{\mathbf{X} \in \mathbb{R}^{m \times r}} \frac{1}{4} \|\mathbf{X}\mathbf{X}^\top - \mathbf{A}\|_{\mathsf{F}}^2$$

☐ Recap of ScaledGD¹

$$\mathbf{X}_{t+1} = \mathbf{X}_t - \eta \underbrace{(\mathbf{X}_t \mathbf{X}_t^\top - \mathbf{A}) \mathbf{X}_t}_{\text{gradient}} \cdot \underbrace{(\mathbf{X}_t^\top \mathbf{X}_t)^{-1}}_{\text{preconditioner}}$$

- EP: linear convergence under small initialization $[\mathbf{X}_0]_{ij} \sim \mathcal{N}(0, \zeta^2)$ (for small ζ^2)
- OP: (modified version) linear convergence when using small initialization
- UP: convergence is unclear yet

□ Our contributions

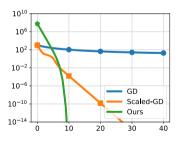
- Nyström initialization enables ScaledGD to achieve quadratic rates for EP and OP, and guarantees linear convergence for UP in (a)symmetric problems
- Initialization can exponentially impact convergence!
- Nyström initialization also helps for finetuning LLMs with LoRA

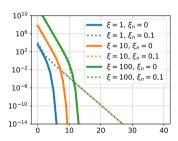
Nyström initialization enables quadratic convergence in EP

- ☐ Nyström initialization
 - ullet Nyström initialization enables $old X_0$ and old A share the same column space, i.e., it eliminates the "noise" space

$$\mathbf{X}_0 = \mathbf{A} \mathbf{\Omega}, \quad ext{where } [\mathbf{\Omega}]_{ij} \sim \mathcal{N}(0, \xi^2), orall i, orall j$$

- ☐ Noise space converges exponentially slower
 - Slightly perturbing Nyström initialization, the quadratic rates vanish!





Comparison with existing work

setting		alg.	ref.	init.	rate				
Asymmetric		GD	(Ye & Du 2021)	small	$\mathcal{O}\left(\kappa^4 + \kappa^4 \log(1/\epsilon)\right)$				
	EP	AltGD	(Ward & Kolda 2023)	special	$\mathcal{O}\left(\kappa^2\log(1/\epsilon)\right)$				
		ScaledGD	(Cong et al., 2023)	local	$\mathcal{O}(\log(1/\epsilon))$				
		ScaledGD	Theorem 3	Nyström	$\mathcal{O}(1)$				
	OP	AltGD	(Ward & Kolda 2023)	special	$O\left(\kappa^2 \log(1/\epsilon)\right)$				
		ScaledGD	Theorem 6	Nyström	$\mathcal{O}(1)$				
	UP	GD	(Du et al., 2018)	small	asymptotic				
	Ŭ.	ScaledGD	Theorem 4	Nyström	$\mathcal{O}(1)$				
Symmetric	EP	GD*	(Stöger et al. 2021)	small	$\mathcal{O}\left(\kappa^{8} + \kappa^{2} \log(1/\epsilon)\right)$ $\mathcal{O}\left(\kappa^{3} + \log\log(1/\epsilon)\right)$				
		ScaledGD	Theorem 1	Nyström	$\mathcal{O}\left(\kappa^3 + \log\log(1/\epsilon)\right)$				
	ОР	GD*	(Stöger et al. 2021)	small	$O\left(\kappa^8 + \kappa^6 \log(\kappa/\epsilon)\right)$				
		ScaledGD- λ *	(Xu et al. 2023)	small	$\mathcal{O}\left(\log^2\kappa + \log(1/\epsilon)\right)$				
		ScaledGD	Theorem 5	Nyström	$\mathcal{O}\left(\kappa^3 + \log\log(1/\epsilon)\right)$				
	UP	ScaledGD	Theorem 2	Nyström	$\mathcal{O}(1/\epsilon \cdot \log(1/\epsilon))$				

- 1-step convergence (asymmetric) uses very particular structure of ScaledGD
- A quadratic rate also holds for asymmetric problems

Implications to finetuning LLMs

- ☐ Intuition for fintuning LLMs with LoRA
 - Inject column/row space at initialization and get rid of noise space as much as possible
- □ What are the good directions for initializing LoRA?
 - A set of well-performed adapters share the same col. space with pretrained weights¹
 - We can apply Nyström initialization directly!
 - NoRA: Nyström initialized LoRA

NoRA on StableDiffusion

- ☐ Subject-driven image generation (finetuning diffusion models with my own pics)
 - Goal: "A dog eating nachos"
 - StableDiffusion-v1.4 (0.98B params), LoRA (r = 4) applied on the U-Net (0.8M trainable params)
 - Initialization improves the quality (NoRA vs. LoRA, and NoRA+ vs. LoRA-P)

NoRA on LLaMA

- ☐ Common-sense reasoning with LLaMA-7B and LLaMA2-7B
 - Mix all the datasets for training; evaluate separately
 - LoRA with r = 32, leading to 56M trainable params
 - Nyström initialization is beneficial for tasks beyond pattern recognition, where commonsense and knowledge is needed for proper inferences

	Alg.	BoolQ	PIQA	SIQA	HS	WG	ARC-e	ARC-c	OBQA	avg (↑)
LLaMA	LoRA	66.42	80.03	77.84	82.88	81.85	79.92	63.40	77.20	76.19
	LoRA-P	68.96	80.95	77.43	81.54	80.27	78.83	64.16	79.20	76.41
	NoRA	68.20	80.79	78.40	85.09	80.27	79.17	62.80	78.80	76.69
	NoRA +	69.85	81.83	77.38	82.09	80.03	79.67	64.25	78.60	76.71
LLaMA2	LoRA [‡]	69.8	79.9	79.5	83.6	82.6	79.8	64.7	81.0	77.6
	LoRA-P	71.47	81.50	78.81	85.97	80.43	81.14	66.55	81.00	78.35
	NoRA	71.16	83.08	79.53	85.90	81.85	80.64	66.13	81.80	78.76
	NoRA +	70.52	81.94	79.07	87.66	82.24	82.70	67.06	80.20	78.92