

Relaxed Recursive Transformers

Sangmin Bae*, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Seungyeon Kim, Tal Schuster†

*Work done during an internship at Google DeepMind, †Corresponding Author

Adaptive Computation: Early-exiting Framework

- To address the computational demands of large language models (LLMs), various adaptive computation methods are being proposed to enhance efficiency.
- **Early-exiting** framework:
 - Easy tokens exit in early layers, while hard tokens forward whole depths.

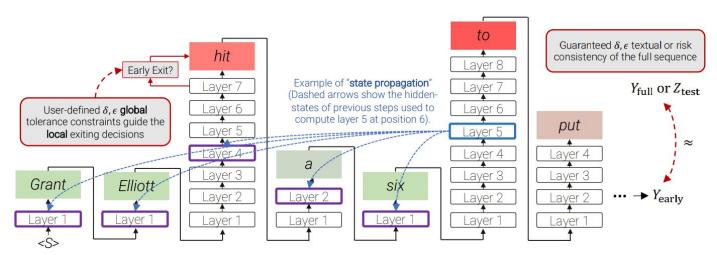
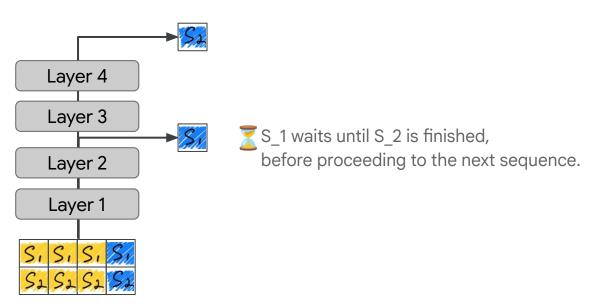


Figure from "Schuster, Tal, et al. Confident Adaptive Language Modeling (NeurIPS 2022)".

Batched Inference is Tricky for Early-exiting

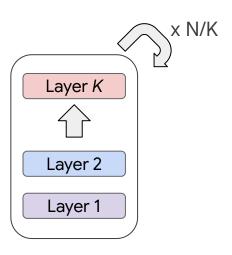
- Dynamic exit points paradoxically poses a challenge for batched inference.
 - Although the tokens exit at early layers, they must wait for the others.



Solution: Parameter Sharing

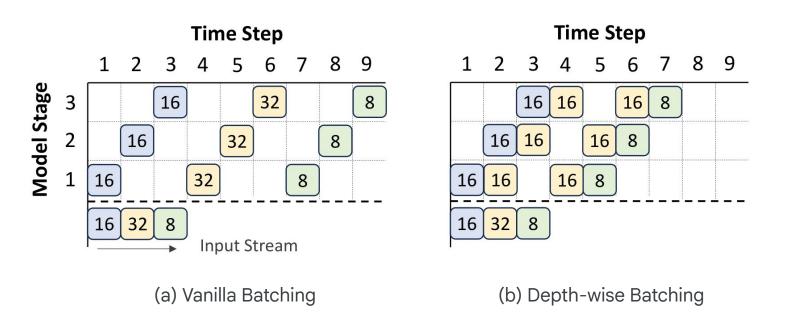
Recursive Transformers:

- Recursively apply the same function for N/K times.
- Reduce parameter size by *N/K*, **minimizing memory footprint**.



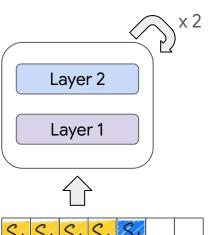
Recursive Transformers Enable Continuous Depth-wise Batching

 Since the model's depths (stages) share the same parameters, we can maximize throughput by continuously batching samples at different depths.



Early-exiting Further Enhances Continuous Depth-wise Batching

- early-exits after first iteration.
- have to forward twice for an accurate prediction.



of 5th sequence and of 4th sequence will be batched together!

Two Research Goals for Recursive Transformers

Performance

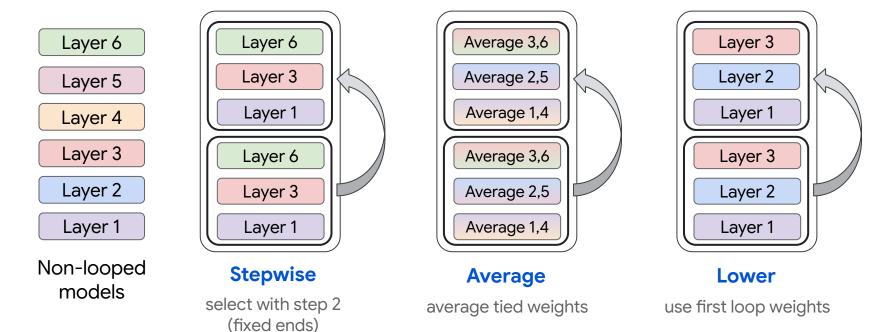
- We need to find a correct recipe to train Recursive Transformers.
- This includes initialization methods and relaxation strategies for weight tying.

Throughput

 By pairing an early-exit framework with continuous batching, we aim to improve inference speed.

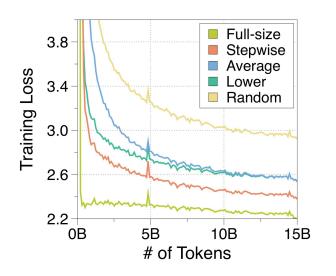
Initialization Techniques for Looped Layers

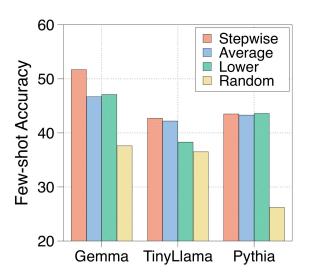
We convert existing LLMs into Recursive Transformers using following initialization.



Takeaways for Recursive Transformers

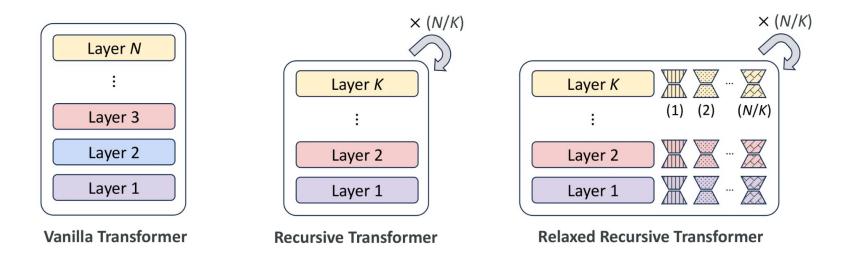
We find that **converting well-pretrained models** into Recursive Transformers leads to **high-performing models with minimal uptraining**. Notably, Initializing looped layers via the **Stepwise method** yields the best results.





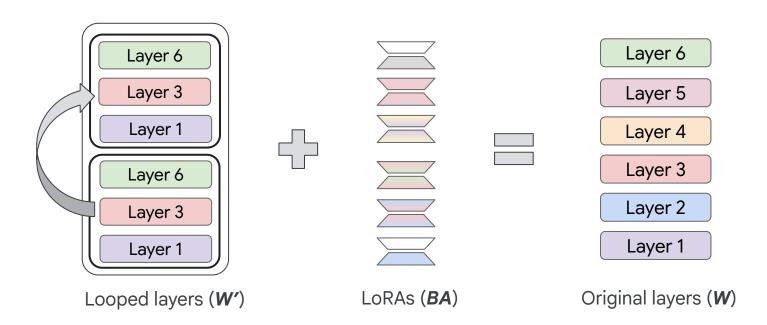
Relaxed Recursive Transformers with Layer-wise LoRAs

We augment perfectly tied layers with specific LoRAs corresponding to each loop.



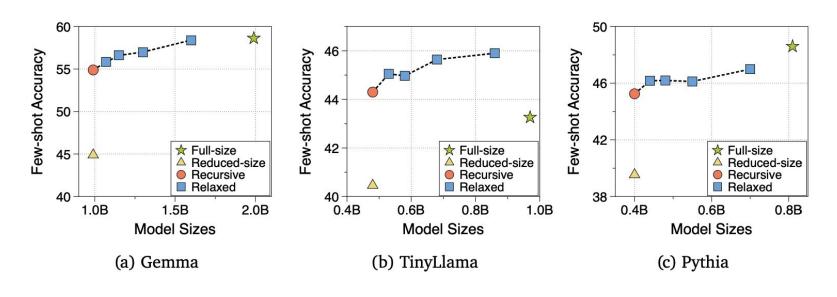
Truncated SVD to Initialize LoRA Modules

• Truncated SVD on residual matrices (W - W') matrices $\rightarrow (U\Sigma)$ for B and V for A).



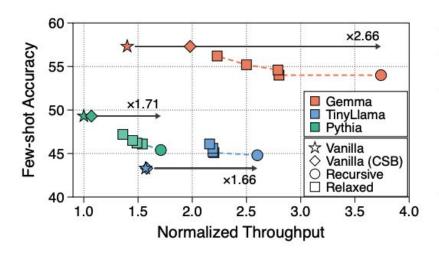
Takeaways for Relaxed Recursive Transformers

Our SVD-based initialization allows for smooth transition between vanilla and recursive models by adjusting LoRA ranks. Initializing looped layers with Average method leads to the best performance in this relaxed setting.



Takeaways for Continuous Depth-wise Batching

In theory, we can achieve up to 2-3x speedup compared to a vanilla Transformer via continuous depth-wise batching and early-exiting.



N-emb	Loop	LoRA	Batch	Exit	Acc.	Thr.	Δ_V	Δ_{Seq}
1.99B	-		15.0	X	57.3	1080	×1.00	×0.71
1.99B	-	-	CSB	X	57.3	1528	×1.41	$\times 1.00$
0.99B	2	-	CDB	1	54.0	2877	×2.66	×1.88
1.07B	2	64	CDB	1	54.0	2157	$\times 2.00$	×1.41
1.15B	2	128	CDB	1	54.6	2149	×1.99	×1.41
1.30B	2	256	CDB	1	55.2	1921	$\times 1.78$	×1.26
1.60B	2	512	CDB	1	56.2	1719	$\times 1.59$	×1.13

Conclusion

- We introduce Recursive Transformers, in which we compress LLMs via parameter sharing across recursively looped blocks of layers.
- We present a novel relaxation strategy that allows for low-rank deltas between shared layers by integrating layer-specific LoRA modules into the fully-tied structure.
- By exploiting the recursive patterns and an early-exiting approach, we propose a continuous depth-wise batching paradigm tailored for efficient serving systems of Recursive Transformers.

Relaxed Recursive Transformers

Sangmin Bae*, Adam Fisch, Hrayr Harutyunyan, Ziwei Ji, Seungyeon Kim, Tal Schuster

Poster session is scheduled for April 26th (Saturday) 10 am - 11:30 am (SGT)

Paper