Fengbo: a Clifford Neural Operator pipeline for 3D PDEs in Computational Fluid Dynamics

A. Pepe¹⁻² M. Montanari³ J. Lasenby¹

 $^1\mathrm{Signal}$ Processing and Communications Lab, University of Cambridge $^2\mathrm{Intelligent}$ Cloud Technologies Laboratory, Huawei Research Center Germany & Austria $^3\mathrm{Impact}$ Engineering Laboratory, University of Oxford

International Conference on Learning Representations, April 2025, Singapore

Navier-Stokes Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \psi) = 0 \tag{1}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \psi) = 0 \tag{1}$$

$$\rho \frac{\partial \psi}{\partial t} + \rho (\psi \cdot \nabla) \psi = -\nabla \phi + \mu \nabla^2 \psi + \mathbf{f} \tag{2}$$

Navier-Stokes Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \psi) = 0 \tag{1}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \psi) = 0 \tag{1}$$

$$\rho \frac{\partial \psi}{\partial t} + \rho (\psi \cdot \nabla) \psi = -\nabla \phi + \mu \nabla^2 \psi + \mathbf{f} \tag{2}$$

• Transformers (e.g., Transolver, Wu 2025) methods are accurate, but their computational cost scales quadratically.

Navier-Stokes Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \psi) = 0 \tag{1}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \psi) = 0 \tag{1}$$

$$\rho \frac{\partial \psi}{\partial t} + \rho (\psi \cdot \nabla) \psi = -\nabla \phi + \mu \nabla^2 \psi + \mathbf{f} \tag{2}$$

- Transformers (e.g., Transolver, Wu 2025) methods are accurate, but their computational cost scales quadratically.
- Neural Operators (e.g. GINO, Li 2024) learning mappings between function spaces and are more efficient for high-dimensional PDEs.

Navier-Stokes Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \psi) = 0 \tag{1}$$

$$\rho \frac{\partial \psi}{\partial t} + \rho(\psi \cdot \nabla)\psi = -\nabla \phi + \mu \nabla^2 \psi + \mathbf{f}$$
 (2)

- Transformers (e.g., Transolver, Wu 2025) methods are accurate, but their computational cost scales quadratically.
- **Neural Operators** (e.g. GINO, Li 2024) learning mappings between function spaces and are more efficient for high-dimensional PDEs.

Problem Statement

Estimate pressure field $\phi(\mathbf{x}):\Omega_D\subset\mathbb{R}^3\to\mathbb{R}$ and velocity field $\psi(\mathbf{x}):\Omega_D\subset\mathbb{R}^3\to\mathbb{R}^3$

Geometric Algebra Networks

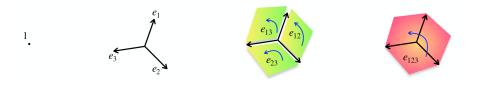


Figure 1: Elements of G(3,0,0), the 3D Euclidean space.

Fengbo

Why Hypercomplex Neural Networks in Geometric Algebra (GA)?

- Compact
- Interpretable
- Lower Complexity
- Better Generalisability

3/6

Geometric Algebra Networks

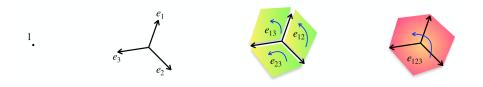


Figure 1: Elements of G(3,0,0), the 3D Euclidean space.

Why Hypercomplex Neural Networks in Geometric Algebra (GA)?

- Compact
- Interpretable
- Lower Complexity
- Better Generalisability

We embed inputs (i.e. geometry) and outputs (i.e. physical quantities) as objects in G(3,0,0), known as multivectors.

Strategy: multivectors defined over regular grids

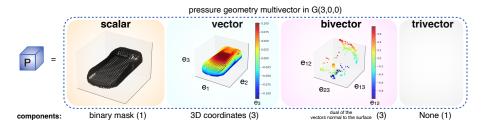


Figure 2: Input multivector P

Strategy: multivectors defined over regular grids

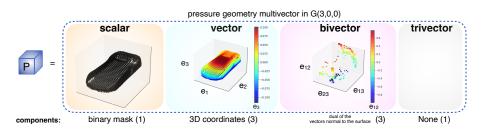


Figure 2: Input multivector P

Input: (geometry) multivector P $P = m_p + \mathbf{p} + B = \underbrace{m_p}_{\text{scalar}} + \underbrace{p_1 e_1 + p_2 e_2 + p_3 e_3}_{\text{vector}} + \underbrace{B_{12} e_{12} + B_{13} e_{13} + B_{23} e_{23}}_{\text{bivector}}$ (3)

Strategy: multivectors defined over regular grids

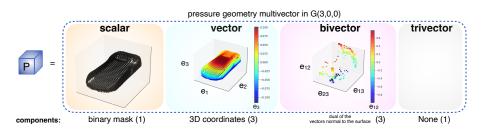


Figure 2: Input multivector P

Input: (geometry) multivector P $P = m_p + \mathbf{p} + B = \underbrace{m_p}_{\text{scalar}} + \underbrace{p_1 e_1 + p_2 e_2 + p_3 e_3}_{\text{vector}} + \underbrace{B_{12} e_{12} + B_{13} e_{13} + B_{23} e_{23}}_{\text{bivector}}$ (3)

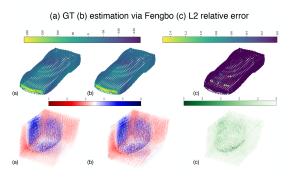


Figure 3: Estimated pressure and velocity fields ϕ, ψ for the *ShapeNet Car* dataset.

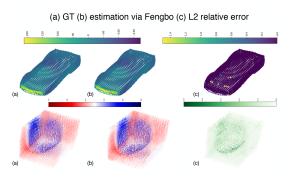
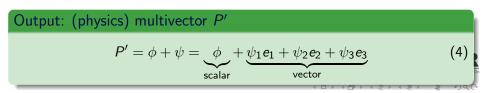


Figure 3: Estimated pressure and velocity fields ϕ, ψ for the <code>ShapeNet Car</code> dataset.



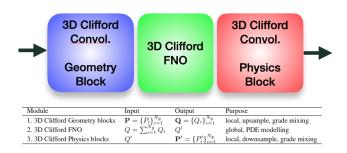


Figure 4: Fengbo $P' = \Xi(P)$

Reduced parameters and computational complexity.

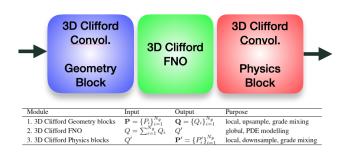


Figure 4: Fengbo $P' = \Xi(P)$

- Reduced parameters and computational complexity.
- Lower test error than most NOs, robust to discretisation.

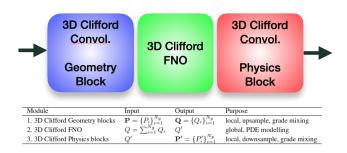


Figure 4: Fengbo $P' = \Xi(P)$

- Reduced parameters and computational complexity.
- Lower test error than most NOs, robust to discretisation.
- Multi-quantity estimation possible.

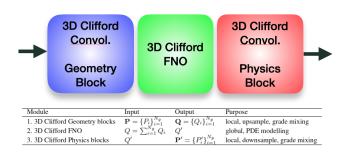


Figure 4: Fengbo $P' = \Xi(P)$

- Reduced parameters and computational complexity.
- Lower test error than most NOs, robust to discretisation.
- Multi-quantity estimation possible.
- End-to-end interpretability.

