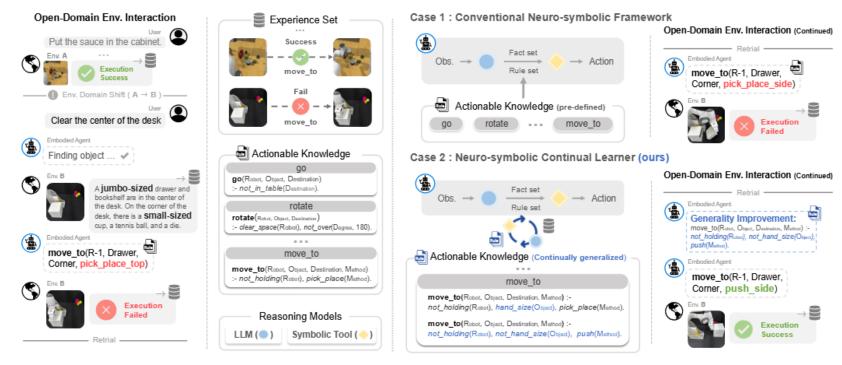


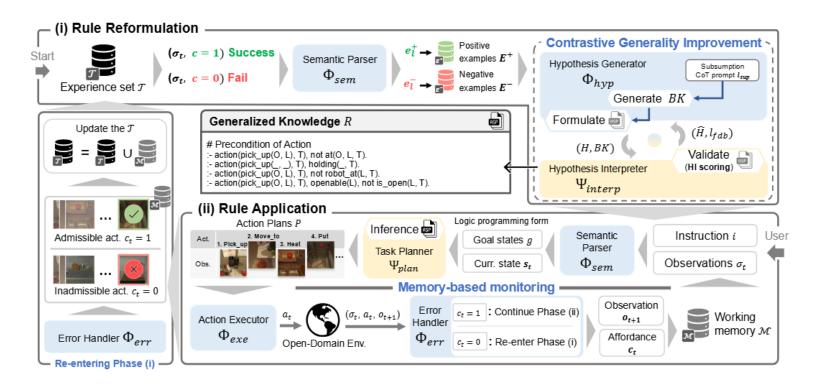
NeSyC: A Neuro-Symbolic Continual Leaner For Complex Embodied Tasks In Open Domains

Wonje Choi*, Jinwoo Park*, Sanghyun Ahn, Daehee Lee, Honguk Woo Department of Computer Science and Engineering, Sungkyunkwan University {wjchoi1995, pjw971022, shyuni5, dulgi7245, hwoo}@skku.edu


Introduction

1. Neuro-symbolic systems for embodied tasks

- integrating Large Language Models (LLMs) with symbolic tools for planning (e.g., ASP solver, PDDL solver).
- existing neuro-symbolic approaches rely on predefined, fixed rules tailored to specific tasks or environments.


Introduction

2. Generalization of actionable knowledge in open-domain environments

- Our goal is to generalize actionable knowledge using limited agent's experiences for continual tasks.
- Drawing inspiration from the hypothetico-deductive model, continually forming hypotheses, rigorously testing them against available observations, and iteratively revise them.

Neuro-Symbolic Continual Leaner

1. NeSyC framework is designed:

- To leverage LLMs for rich language-based reasoning and hypothesis generation
- To employ symbolic tools for logical validation and error detection

Evaluation: Setting

• Environment

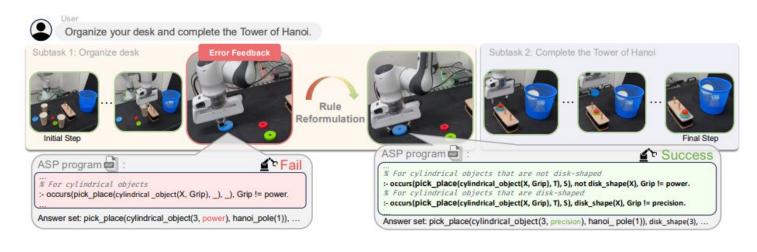
- For simulation experiment, we use ALFWorld, VirtualHome, Minecraft, RLBench
- For real-world scenario, we design table-top rearrangement tasks

Baselines

- LLM-based planning methods: LLM-planner
- Multi-agent frameworks: ReAct and Reflexion, AutoGen
- Neuro-symbolic approaches: ProgPrompt and CLMASP

• Metrics

- Task Success Rate (SR) (%) is the percentage of tasks fully completed
- Goal-conditioned Success Rate (GC) (%) is the percentage of sub-goals that are completed.


Evaluation: Performance

ALFWorld		Static			Low Dynamic	;	High Dynamic				
Methods	SR GC Step		SR	GC	Step	SR	GC	Step			
LLM-planner	10.6 ± 2.8	17.7 ± 3.4	20.9 ± 3.7	9.8±2.7	22.2 ± 3.8	26.8 ± 4.0	7.3±2.4	17.1 ± 3.4	21.1 ± 3.7		
ReAct	35.8 ± 3.5	48.2 ± 4.1	51.7 ± 4.3	34.1 ± 4.3	45.2 ± 4.5	50.6 ± 4.5	18.7 ± 3.5	28.1 ± 4.1	33.5 ± 4.3		
Reflexion	39.0 ± 3.7	$63.5 {\pm} 4.4$	67.0 ± 4.5	37.4 ± 4.4	64.8 ± 4.3	70.6 ± 4.1	21.1 ± 4.4	41.5 ± 4.3	$43.6 {\pm} 4.2$		
AutoGen	58.5 ± 4.4	77.8 ± 3.7	81.1 ± 3.5	51.2 ± 4.5	69.3 ± 3.9	75.6 ± 4.2	30.9 ± 4.2	50.6 ± 4.5	58.8 ± 4.4		
CLMASP	$88.5{\pm}2.9$	89.1 ± 2.8	89.1 ± 2.8	58.8 ± 4.4	63.3 ± 4.4	71.8 ± 4.1	23.8 ± 3.9	36.5 ± 4.4	45.8 ± 4.5		
NESYC	82.9±3.4	83.5 ± 3.4	83.6 ± 3.3	78.9±3.7 79.4±3.7 80.0±3.6		70.7±4.1	75.5±3.9	76.4 ± 3.8			
VirtualHome		Static			Low Dynamic	;	High Dynamic				
Methods	SR	GC Step SR GC Step		Step	SR	GC Step					
LLM-planner	21.5±0.5	$33.2 {\pm} 0.4$	33.0 ± 9.7	20.5±0.6	$32.7 {\pm} 0.8$	$29.8{\pm}2.7$	14.8±3.4	$27.7{\pm}2.9$	$21.5{\pm}2.2$		
ReAct	40.0 ± 5.0	51.9 ± 4.5	44.8 ± 0.8	34.6 ± 3.6	46.8 ± 3.4	35.9 ± 3.7	17.2 ± 2.1	$32.4{\pm}1.2$	18.8 ± 2.0		
Reflexion	36.2 ± 1.7	47.5 ± 2.0	5 ± 2.0 16.4 ± 1.1 35.4 ± 1.9 46.6 ± 1.1		46.6 ± 1.0	$36.5{\pm}1.8$	15.5 ± 0.9	29.7 ± 1.6	16.4 ± 1.1		
AutoGen	44.3 ± 2.2			$43.2{\pm}1.2$	54.4 ± 1.4	54.4 ± 1.4 44.9 ± 1.2		33.0 ± 1.7	20.6 ± 1.0		
CLMASP	76.4 ± 0.8	$89.1 {\pm} 0.8$	84.1 ± 0.0	28.9 ± 0.4			0.0 ± 0.0 77.5 ± 1.3	13.1 ± 0.0	0.0 ± 0.0		
NESYC	$82.3 {\pm} 0.4$	87.4 ± 0.6	$84.2 {\pm} 0.6$	79.6±1.9	$85.8 {\pm} 1.1$	85.8 ± 1.1 80.8 ± 1.9		84.1 ± 0.6	79.0 ± 1.2		
Minecraft		Static			Low Dynamic	;	High Dynamic				
Methods	SR	GC	Step	SR	GC	Step	SR	GC	Step		
LLM-planner	31.1 ± 1.5	$41.2 {\pm} 1.4$	$42.5{\pm}2.4$	28.9 ± 4.2	31.9 ± 1.6	37.0 ± 1.6	23.3 ± 2.7	$25.8{\pm}1.3$	$28.9 {\pm} 0.4$		
ReAct	$34.4{\pm}1.6$	38.3 ± 1.4	44.4 ± 2.7	27.8 ± 1.6	31.6 ± 1.7	40.5 ± 4.0	21.1 ± 1.6	24.7 ± 2.8	30.6 ± 3.6		
Reflexion	41.1 ± 1.6	47.2 ± 1.3	49.0 ± 1.6	30.0 ± 2.7	34.0 ± 2.7	39.1 ± 2.3	21.1 ± 1.6	24.0 ± 2.4	30.9 ± 4.0		
AutoGen	51.1 ± 4.2	52.2 ± 3.4	53.9 ± 2.8	33.3±2.7	36.6 ± 2.4	38.2 ± 2.5	25.6 ± 3.1	28.3 ± 3.6	32.7 ± 4.2		
CLMASP	94.4 ± 3.1	$95.4 {\pm} 1.7$	$95.8 {\pm} 1.3$	52.2 ± 5.7	55.7 ± 6.4	59.1 ± 5.5	48.9 ± 3.1	50.9 ± 3.6	$52.8 {\pm} 2.8$		
NESYC	$92.2{\pm}1.6$	94.3 ± 0.9	95.3 ± 1.0	91.1±1.6	93.2 ± 1.4	94.1 ± 1.4	87.8±5.7	89.9 ± 5.9	90.9 ± 5.9		
RLbench		Static			Low Dynamic	;	High Dynamic				
Methods	SR	GC	Step	SR	GC	Step	SR	GC	Step		
LLM-planner	16.7 ± 5.7	23.3 ± 2.9	35.5 ± 1.9	16.7±2.9	20.8 ± 1.4	27.4 ± 1.0	18.3±2.9	21.7 ± 1.4	27.2 ± 1.9		
ReAct	23.3 ± 2.9	25.8 ± 1.4	$36.5{\pm}1.7$	21.7 ± 2.8	23.3 ± 1.4	30.8 ± 1.6	18.3±2.9	20.0 ± 2.5	$26.8 {\pm} 2.5$		
Reflexion	$33.3{\pm}2.8$	41.4 ± 5.1	47.5 ± 3.3	21.7 ± 2.9	24.4 ± 2.1	$32.1 {\pm} 2.5$	$23.3{\pm}2.8$	$23.3 {\pm} 2.8$	29.6 ± 2.8		
AutoGen	43.3 ± 8.6	$54.2 {\pm} 4.6$	57.9 ± 3.3	23.3±2.9	$28.6 {\pm} 2.7$	32.1 ± 2.3	21.7 ± 5.8	23.3 ± 2.9	28.9 ± 1.9		
CLMASP	$94.5 {\pm} 4.2$	$95.8 {\pm} 2.8$	$96.0 {\pm} 2.7$	0.0 ± 0.0	6.0 ± 0.8	25.0 ± 2.0	0.0 ± 0.0	3.7 ± 0.7	12.3 ± 0.9		
NESYC	$85.5{\pm}2.7$	88.5 ± 0.9	91.9 ± 0.7	81.5±4.5	$84.8 {\pm} 4.5$	$88.7 {\pm} 3.6$	$79.0{\pm}6.6$	81.8 ± 7.0	$86.2 {\pm} 6.2$		

Table 1. Performance evaluation on simulation environments

- Experiment results
- NeSyC achieves up to a 50% higher success rate compared to multi-agent framework baseline, AutoGen

Evaluation: Performance

Real-world	Real-world Static		Dynamic		Real-world	Sto	ıtic	Dynamic		Real-world	Static		Dynamic	
Binary	SR	GC	SR	GC	Cause	SR	GC	SR	GC	Guidance	SR	GC	SR	GC
LLM	22.2	59.2	11.1	42.4	LLM Human					LLM Human			33.3 66.7	

Table 2. Performance evaluation on real-world environments

• Experiment results

- NeSyC achieves up to a 50% higher success rate compared to multi-agent framework baseline, AutoGen

Conclusion

- A Novel Framework: NeSyC
- Enabling effective embodied task planning in open domains by continually generalizing actionable knowledge from experiences
- Future Direction
- Exploring neuro-symbolic knowledge distillation for resource-efficient embodied control with smaller LLMs.