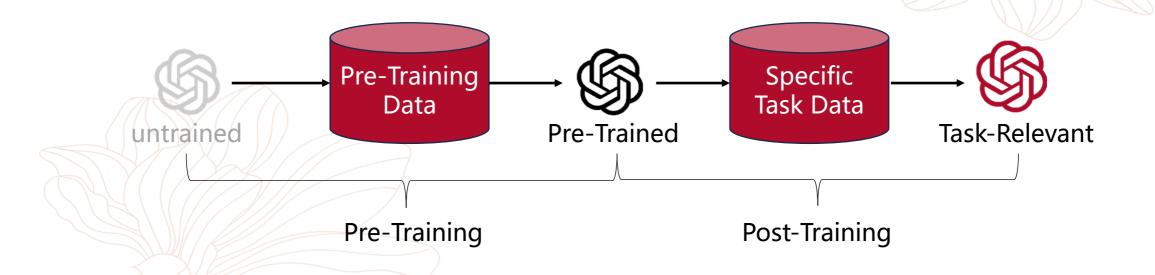


Towards A Theoretical Understanding of Synthetic Data in LLM Post-Training: A Reverse-Bottleneck Perspective

Zeyu Gan

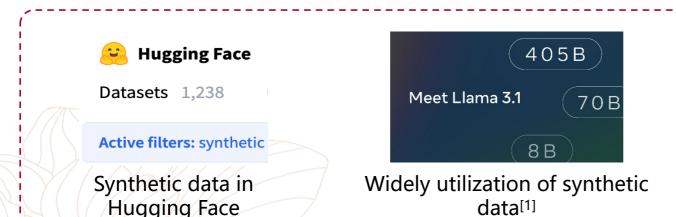
Post-Training of LLMs

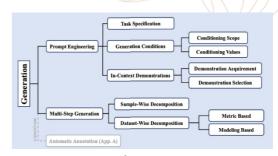
The training of LLMs can be divided as Pre-Training and Post-Training



Synthetic Data

Training data is limited in real-world post-training Synthetic data are an important supplement





Attention from academic community^[2]

^[1] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, and et al. The llama 3 herd of models, 2024.

^[2] Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang. On Ilms-driven synthetic data generation, curation, and evaluation: A survey, 2024.

Synthetic Data Lacks Theoretical Understanding

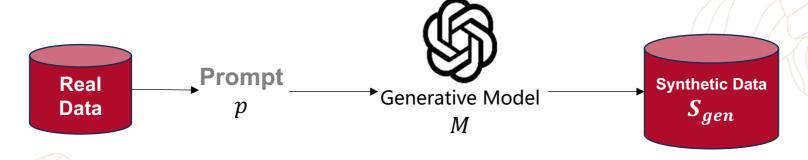
Though it is widely utilized, there is a gap in theoretical analysis. It is important to provide a formulation

In this paper:

- 1) We formalize the synthetic data generation
- 2) We explained the effectiveness of synthetic data in post-training

Synthetic Data Generation

A common procedure of synthetic data generation



Synthetic data is generated by a generative model MThe input prompt of M are determined by the real data

e.g.

In code generation, we first obtain human-written code, and obtain similar code data by incontext learning with an LLM.

Synthetic Data Generation

$$S_{gen} \leftarrow M_p(\mathcal{T}, S_{anchor})$$

right prompt p can be expressed as the transformation of the anchor data by task T:

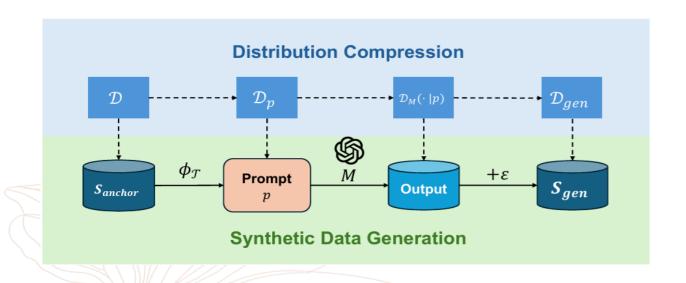
$$p = \phi_{\mathcal{T}}(S_{anchor})$$

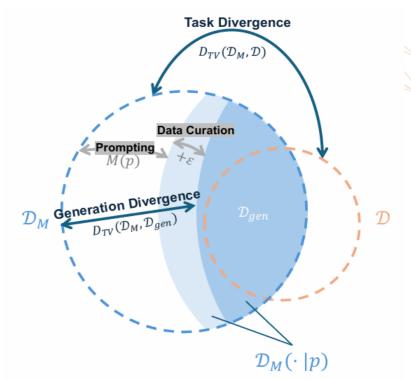
Synthetic data is the output of M on p

$$S_{gen} = M(p) + \epsilon$$

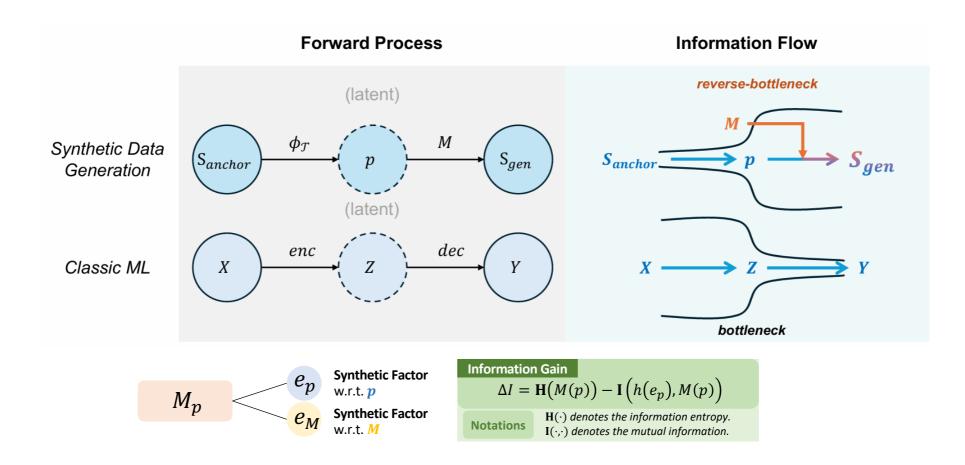
Synthetic Data Generation – Distribution Shift

The generation process can be regarded as a distribution shift





Reverse-Bottleneck



Main Results

Generalization Error

Theorem 4.7. (Synthetic data post-training upper bound.) For the same condition as lemma 4.6 and a synthetic data generation process described above, the generalization error of the model π post-trained on the synthetic data can be bounded as:

$$\mathbb{E}(\operatorname{Err}(\pi^{S_{gen}})) \leq C \underbrace{\left(D_{TV}(\mathcal{D}, \mathcal{D}_{M}) + D_{TV}(\mathcal{D}_{M}, \mathcal{D}_{gen})\right)}_{Distributions' Divergence} + \exp\left(-\frac{L}{2}\log\frac{1}{\eta}\right)\sqrt{\frac{2\sigma^{2}\left[-\Delta I + B_{syn} + H(e_{M}) + \delta_{\epsilon,p}\right]}{n}}.$$

$$(7)$$

Generalization Error w.r.t. synthetic data

The upper bound is controlled by $-\Delta I$. When more information gain is introduced, π^{Sgen} will obtain better generalization capability.

Generalization Gain

The Generalization Gain of Synthetic Data

Definition 4.9. (Generalization Gain via Mutual Information, GGMI.) GGMI is defined as the difference between the mutual information terms in the two generalization upper bounds:

$$GGMI = I(S_{anchor}, W') - I(S_{gen}, W).$$
(9)

Generalization Gain

Theorem 4.10. (Upper bound of GGMI.) Given the synthetic data generation above, W' is parameterized by training with S_{anchor} , and W is parameterized by training with S_{gen} , the GGMI can be bounded as follows:

$$GGMI \leq \Delta I - (\alpha + 1)H(S_{anchor}|W) + 2\Delta H + H(S_{gen}|W) + \epsilon_{W,p}, \tag{10}$$

$$where \ \Delta H = H\left(S_{anchor}\right) - H\left(S_{gen}\right), \ \epsilon_{W,p} = H(S_{anchor}|W) - H(S_{anchor}|M(p)), \ it \ is \ assumed \ that$$

$$H(S_{anchor}|W') = \alpha H(S_{anchor}|W), \ \alpha \geq 0.$$

Diversity

Faithfulness

The benefits of synthetic data are presented in two aspects: **Diversity** and **Faithfulness**, corresponding to ΔI and ΔH

THANKS

THANK YOU