

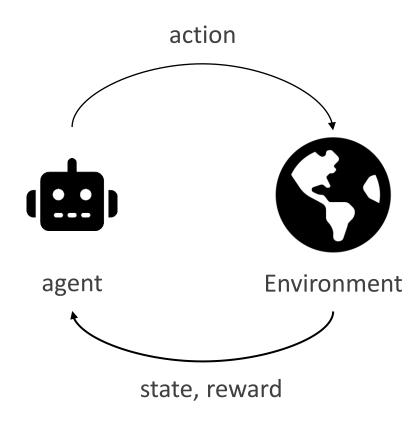
VICtoR: Learning Hierarchical Vision-Instruction Correlation Rewards for Longhorizon Manipulation

Reinforcement Learning, Reward Learning, Modality Alignment

Kuo-Han Hung* Pang-Chi Lo* <u>Jia-Fong Yeh</u>* Han-Yuan Hsu Yi-Ting Chen Winston H. Hsu

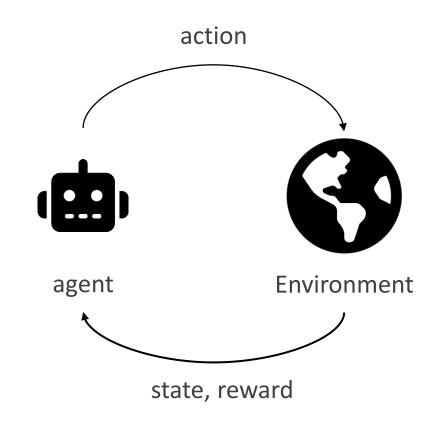
Reinforcement Learning (RL)

 RL learns policies by interacting with the environment and adjusting based on feedback (rewards)



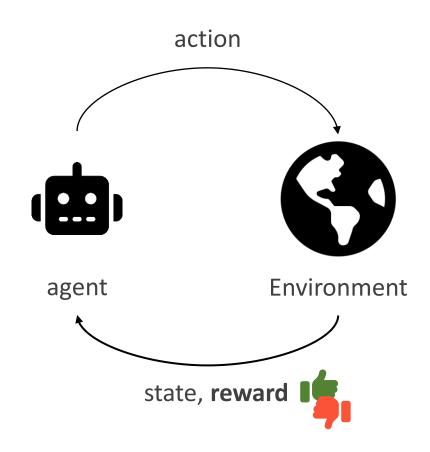
Reinforcement Learning (RL)

- RL learns policies by interacting with the environment and adjusting based on feedback (rewards)
- It has proven to be an **effective** framework for various **downstream tasks**, including *LLM post-training*, *gaming*, and *robotics*

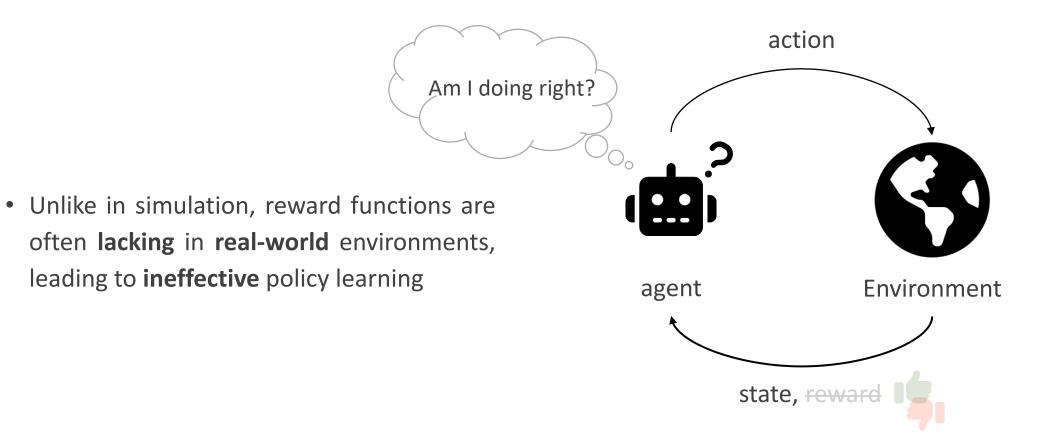


Rewards is Important to RL

 A reward signal should provide timely and informative feedback on whether the action taken in the current state contributes to task completion

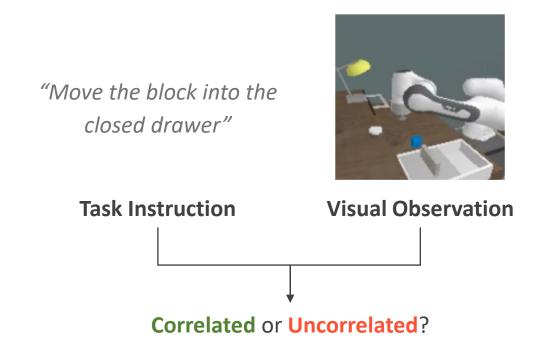


Rewards in Real-world Environments



Vision-Instruction Correlation (VIC) Reward

- VIC reward: Learning reward signals by capturing the correlation between the current visual observation and task instructions
- A more efficient approach to reward learning in practical scenarios

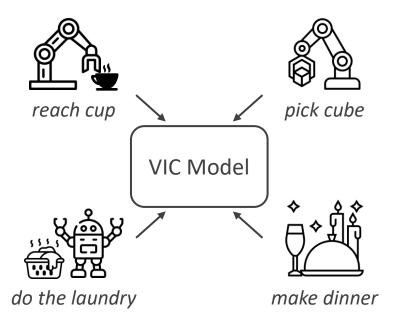


Challenges in Learning VIC Rewards

• Existing methods fail to learn VIC rewards for long-horizon tasks because they:

Challenges in Learning VIC Rewards

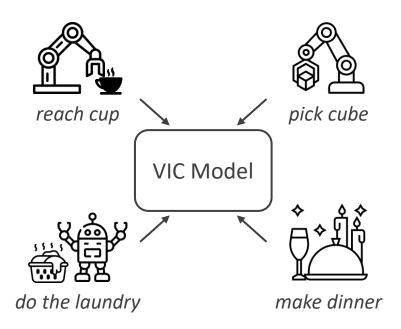
• Existing methods fail to learn VIC rewards for long-horizon tasks because they:



Use a single model to learn rewards for tasks of varying difficulty and horizon

Challenges in Learning VIC Rewards

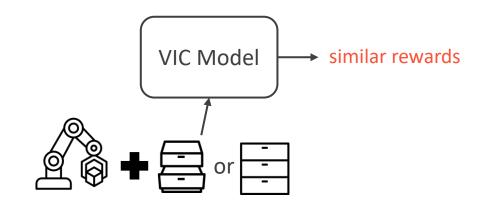
• Existing methods fail to learn VIC rewards for long-horizon tasks because they:



Use a single model to learn rewards for tasks of varying difficulty and horizon

Task Instruction:

"move the block into the closed drawer"



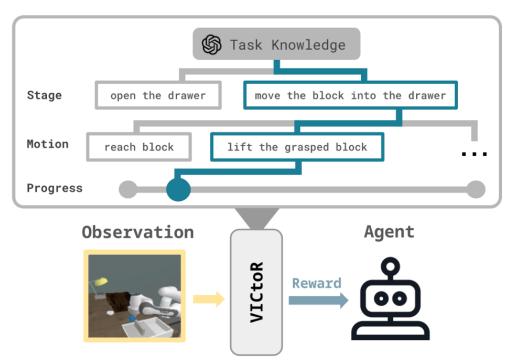
Overlook object state details in the environment

Introduce VICtoR

Motivation

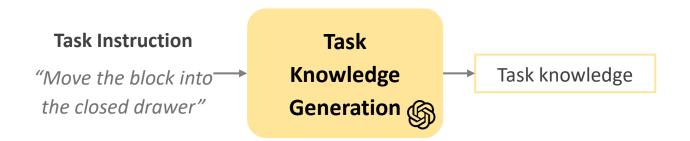
VICtoR Solution

Instruction: Move the block into the closed drawer

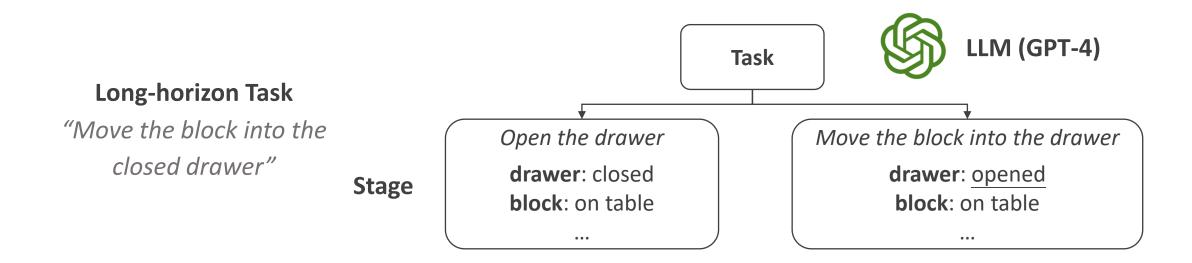


- Decomposing long-horizon task into manageable segments
- Evaluating the task progress at three different granularities
- Tracking the **changes of object status** in the environment

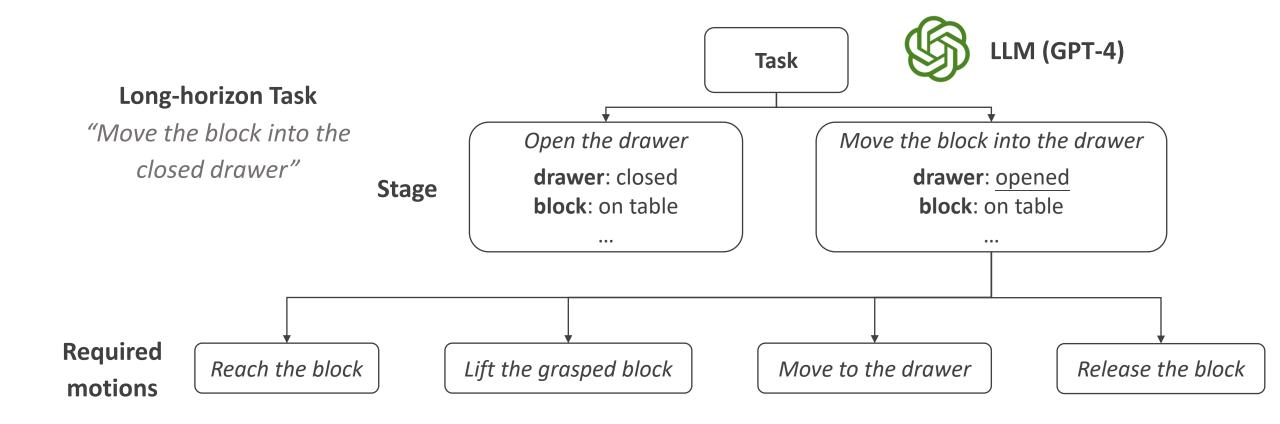
VICtoR Components



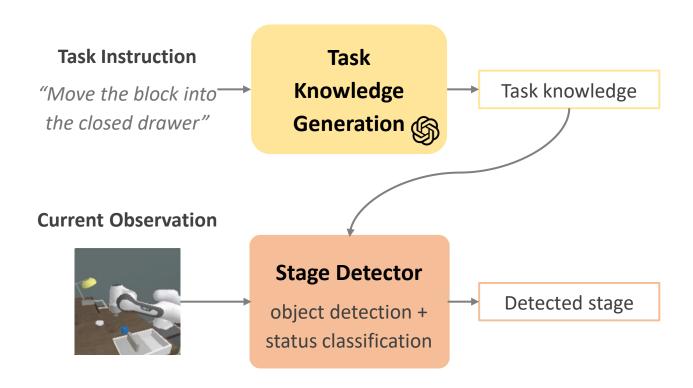
Task Knowledge Generation



Task Knowledge Generation

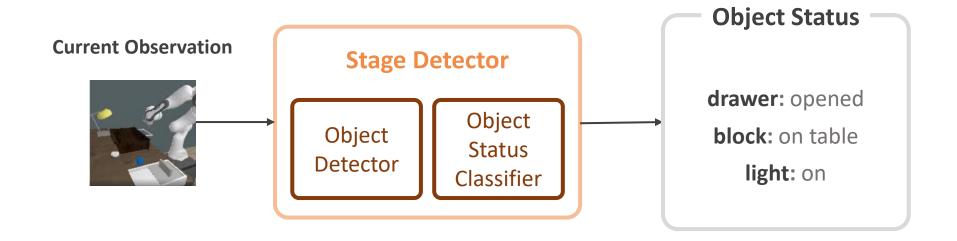


VICtoR Components



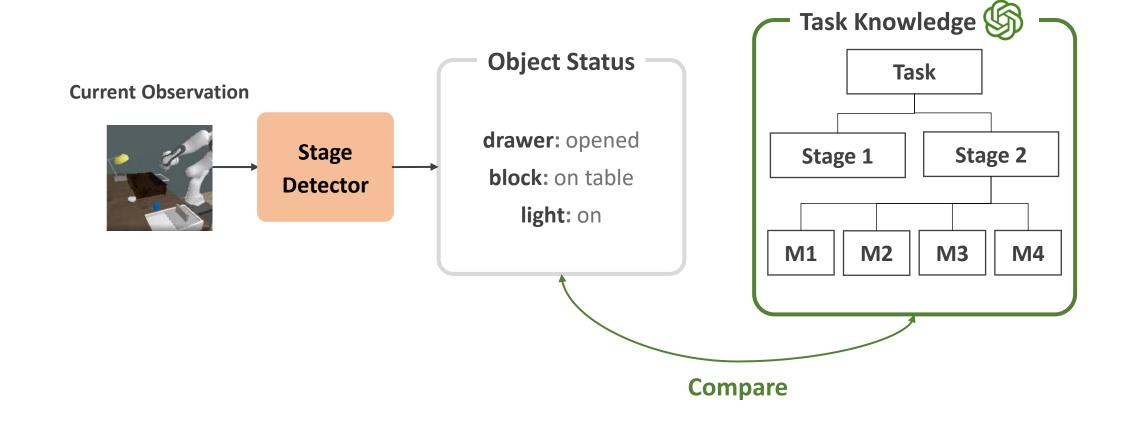
Stage Determination

• Estimating objects status by an open-vocabulary object detector and an object status classifier



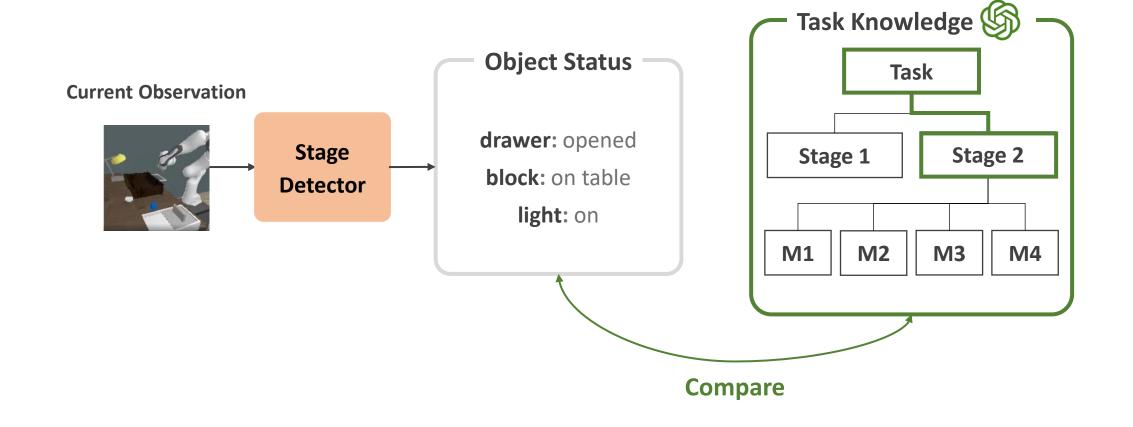
Stage Determination

Compare the estimated status with the ideal ones in the task knowledge

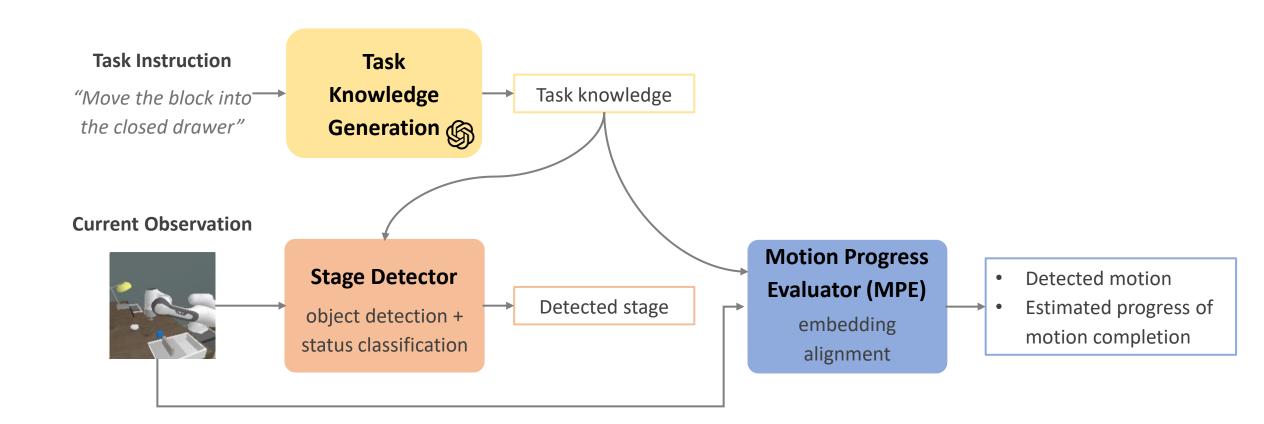


Stage Determination

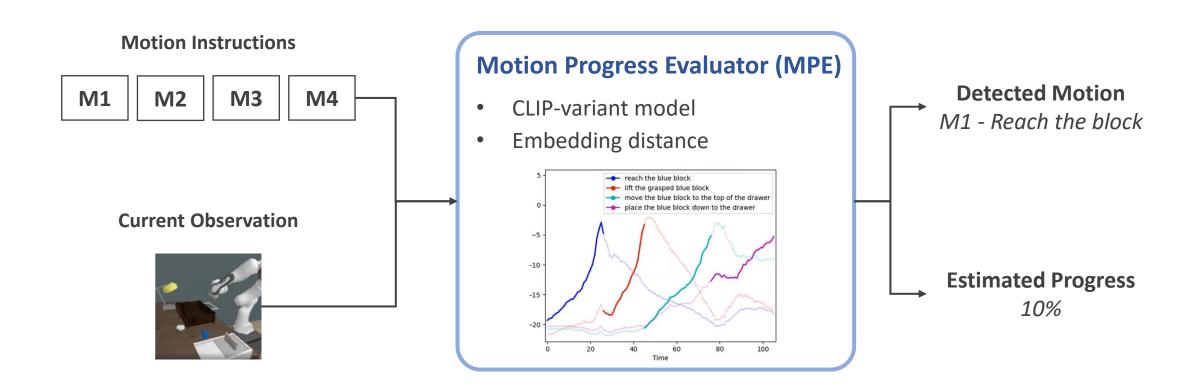
Compare the estimated status with the ideal ones in the task knowledge



VICtoR Components



Motion Determination & Progress Estimation

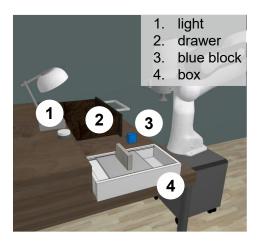


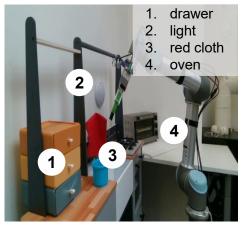
Training Objectives for MPE

In-motion contrastive Language contrastive learning reach the drawer handle Motion contrastive learning open the drawer reach the blue block reach the drawer handle

- Time Contrastive: Frame embeddings with shorter temporal distances should be closer
- Language (Progress) Contrastive: Frame embeddings near the end of a motion should be closer to the motion instruction embedding
- Motion Contrastive: Frame embeddings should be closer to the embedding of their corresponding motion instruction

Evaluations – Environments and Baselines





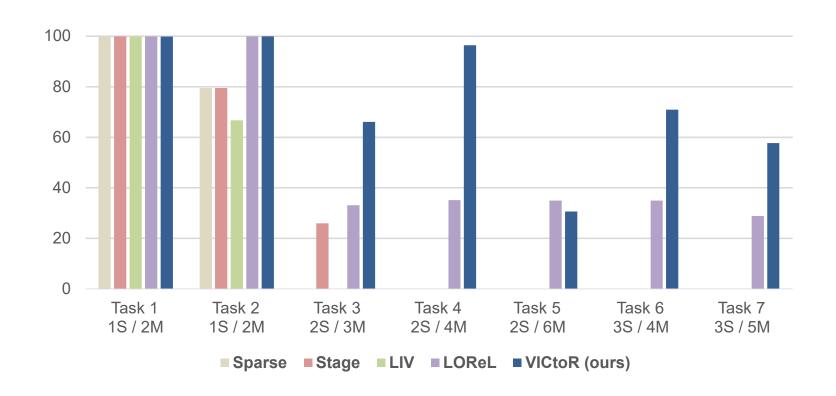
Environment	Tasks	Total Demos	Dataset Type
Simulated	9	2300	Machine Demos
Real World (XSkill)	8	360	Machine Demos

- Evaluations are conducted on both simulated and real-world experiments:
 - **Simulated:** reward learning + policy training
 - Real-world (XSkill): reward learning only

Baselines

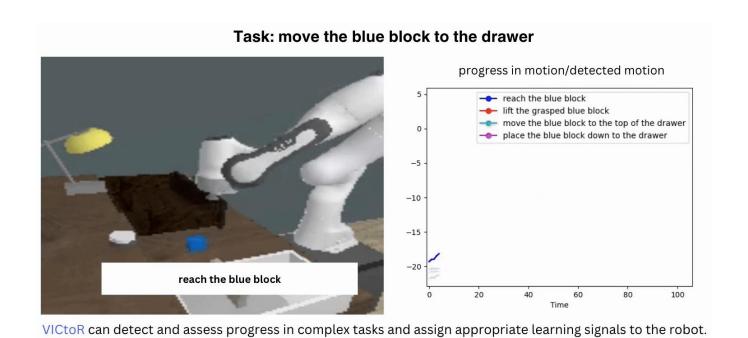
- Sparse reward
- Stage reward
- LOReL (VIC-based)
- LIV (VIC-based)
- VICtoR (task-level)

Performance Comparison: PPO learned with Different Reward Models



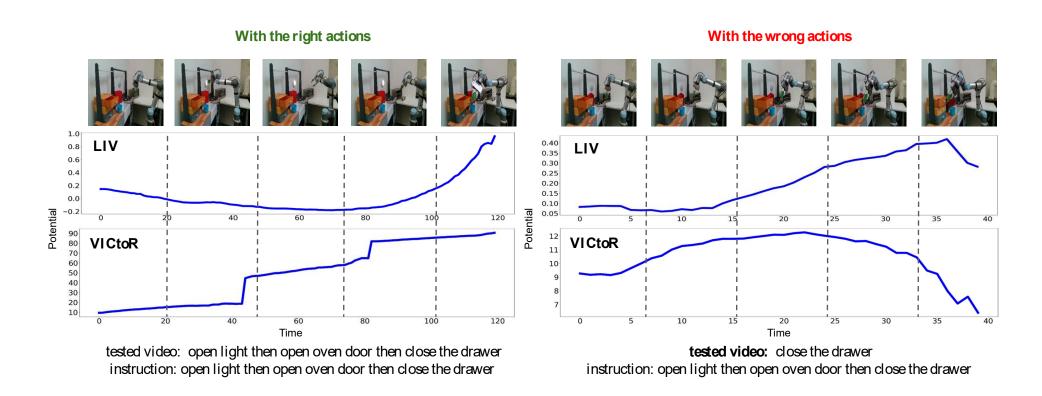
- S and M indicate the number of stages and motions to complete the task
- The same RL algorithm, PPO, trained with VICtoR can learn more complicated tasks

Motion Determination Visualization



- Completing the task requires **four** distinct motions
- VICtoR precisely identifies the robot's current motion

Rewards Generated for Different Cases



- In the correlated case, VICtoR generates meaningful rewards for task progress
- In the uncorrelated case, it recognizes mismatches and adjusts its rewards

Summary & Takeaways

- This work is the first to explore VIC reward models for long-horizon tasks
- By evaluating task progress at three **different granularities**, VICtoR generates **nuanced** and **informative** rewards
- Experimental results show that VICtoR enables the same RL algorithm to tackle more **complex**, long-horizon tasks, supported by extensive **visualization results**

