

Mail: chao.wang@eurecom.fr

Information Theoretic Text-to-Image Alignment

Chao Wang, Giulio Franzese, Alessandro Finamore, Massimo Gallo, Pietro Michiardi

ICLR 2025

Problem

For existing text-to-image (T2I) diffusion models, precise alignment between given texts and generated images is still challenging (e.g., attribute binding, missing object).

A round bag and a rectangular wallet

A man on the top of a turtle

Research question: Would it be possible to use Mutual Information (MI) between image and text to measure and guide the alignment?

Prerequisites:

- 1) MI formula supported by discrete-time diffusion model
- 2) Is MI a meaningful signal for T2I alignment?

Prereq1: Point-wise MI estimation

Given 2 R.V. z, p sampled from the joint distribution $p_{latent,prompt}$,

$$\mathbf{I}(\boldsymbol{z},\boldsymbol{p}) = \mathbb{E}_{t,\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0},\boldsymbol{I})} \left[\kappa_t || \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{z}_t,\boldsymbol{p},t) - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{z}_t,\emptyset,t) ||^2 \right], \quad \kappa_t = \frac{\beta_t T}{2\alpha_t (1 - \bar{\alpha}_t)}.$$

"A round bag and a rectangular wallet"

Discrete-time diffusion model:

- Forward process: $q(\mathbf{z}_{0:T}, \mathbf{p}) = q(\mathbf{z}_0, \mathbf{p}) \prod_{t=1}^T q(\mathbf{z}_t | \mathbf{z}_{t-1})$ Hand-crafted transition kernel: $q(\mathbf{z}_t | \mathbf{z}_{t-1}, \mathbf{p}) = q(\mathbf{z}_t | \mathbf{z}_{t-1}) = \mathcal{N}(\mathbf{z}_t; \sqrt{1 - \beta_t} \mathbf{z}_{t-1}, \beta_t \mathbf{I})$
- Backward process: $p_{\theta}(\mathbf{z}_{0:T}|\mathbf{p}) = p(\mathbf{z}_T) \prod_{t=1}^T p_{\theta}(\mathbf{z}_{t-1}|\mathbf{z}_t,\mathbf{p})$

Learnable transition kernel: $p_{\theta}(\mathbf{z}_{t-1}|\mathbf{z}_t, \mathbf{p}) = \mathcal{N}(\mathbf{z}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{z}_t, \mathbf{p}), \beta_t \mathbf{I})$, with $\boldsymbol{\mu}_{\theta}(\mathbf{z}_t, \mathbf{p}) = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{z}_t - \frac{\beta_t}{\sqrt{1-\overline{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{z}_t, t, \mathbf{p}) \right)$

The unguided version $p_{\theta}(\mathbf{z}_{t-1}|\mathbf{z}_t,\emptyset)$ was optimized at the same time to improve CFG sampling.

Prereq2: MI is a meaningful signal for alignment

Comparison between MI and well-established alignment metrics (BLIP-VQA[1], HPS[2])

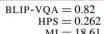
1. Kendall rank correlation coefficient

- good agreement between MI and BLIP-VQA (τ = 0.4)
- strong agreement between MI and HPS (τ = 0.68)

2. Human preference among the top-ranked images

- MI for 69.1%
- BLIP-VQA for 73.5%
- HPS for 52.2%

Shape binding: "A round bag and a rectangular wallet"



BLIP-VQA = 0.64 HPS = 0.247MI = 17.16

BLIP-VQA = 0.27 HPS = 0.262MI = 14.84

BLIP-VQA = 0.24 HPS = 0.216MI = 12.50

BLIP-VQA = 0.01 HPS = 0.160MI = 11.57

high scores = good alignment

low scores = poor alignment

MI-TUNE: Self-supervised fine-tuning

Method:

- 1. For each prompt, generate 50 images
- 2. Filter the images with the highest *I* (image, text)
- 3. Finetune DoRA on these better aligned samples → improve T2I alignment

This process can be repeated for multiple rounds.

Advantage: no extra information needed

Experimental results

- Benchmark on T2I-CompBench prompts: 6 categories
- MI-TUNE achieves new SOTA text-image alignment.

Alignment results (%)

		BLIP-VQA				HPS					Human (user study)											
	Method	Color	Shape	Texture	2D-Sp.	Non-Sp.	Compl.	(avg)	Color	Shape	Texture	2D-Sp.	Non-Sp.	Compl.	(avg)	Color	Shape	Texture	2D-Sp.	Non-Sp.	Compl.	(avg)
	SD-2.1-base	49.65	42.71	49.99	15.77	66.23	50.53	(45.81)	27.64	24.56	24.99	27.50	26.66	25.70	(26.17)	29.76	11.90	40.48	35.71	66.67	29.76	(35.71)
Infer.	A&E	61.43	47.39	64.10	16.18	66.21	51.69	(51.17)	28.44	24.43	25.88	28.42	26.60	25.60	(26.56)	31.95	15.48	52.38	32.14	65.48	30.95	(38.06)
	SDG	47.15	45.24	47.13	15.25	66.17	47.41	(44.72)	27.25	24.40	24.71	27.10	26.12	25.83	(25.90)	26.19	15.48	38.10	38.10	61.90	29.76	(34.92)
	SCG	49.82	43.28	50.16	16.31	66.60	51.07	(46.21)	27.86	24.85	25.57	27.76	26.98	26.03	(26.51)	20.24	11.90	33.33	40.48	69.05	39.29	(35.71)
FT	DPOK	53.28	45.63	52.84	17.19	66.95	51.97	(47.98)	28.20	24.99	25.44	28.12	26.80	25.88	(26.57)	23.81	16.67	47.62	34.52	70.24	38.10	(38.49)
	GORS	53.59	43.82	54.47	15.66	67.47	52.28	(47.88)	28.15	24.79	25.56	27.90	26.88	26.07	(26.56)	34.52	14.29	48.81	36.90	65.48	30.95	(38.49)
	HN-ITM	46.51	39.99	48.78	15.24	65.31	49.84	(44.28)	26.90	24.33	24.63	27.15	25.40	25.22	(25.60)	23.81	19.05	30.95	20.24	47.62	23.81	(27.58)
	MI-TUNE	65.04	50.08	65.82	†18.51	67.77	54.17	(53.56)	29.13	25.57	26.20	28.50	27.15	26.70	(27.21)	46.43	25.01	53.19	45.24	73.81	46.43	(48.35)

Experimental results

SD-XL

	BLIP-VQA						
Method	Color Shape	Texture 2D-Sp.	Non-Sp. Comp.				
		55.78 21.02 49.99 15.77					
MI-TUNE	69.66 55.86	66.74 22.18	72.17 57.74				
MI-TUNE ⊟ (ref) MI-TUNE % (ref)			4.01 5.06 5.88 9.61				

SDXL MI-TUNE

(Color) "A green apple and a brown horse"

SDXL

MI-TUNE

"A black jacked and a brown hat"

Human Prompts

Model	HPS
SD-2.1-base	23.99
DiffusionDB	24.35
MI-TUNE	25.32
MI -TUNE \Box $base$	1.33
MI -TUNE \Box $Diffusion DB$	0.97

SD-2.1-base Fine-tuned using MI-TUNE DiffusionDB images

(Human prompt) "Child's body with a radioactive jellyfish as a head, realistic illustration, backlit, intricate, indie studio, fantasy, rim lighting, vibrant colors, emotional"

What about Rectified Flows (e.g., SD3)?

Check out our ICLR 2025 Delta Workshop paper:

RFMI: Estimating Mutual Information on Rectified Flow for Text-to-Image Alignment

$$I(X;y) = \int_0^1 \mathbb{E}_{X_t|Y=y} \left[\frac{t}{1-t} u_t(X_t|Y=y) \cdot (u_t(X_t|Y=y) - u_t(X_t)) \right] dt$$

SD3.5-M

RFMI FT

(Shape) "a round bag and a square box"

Conclusion

- A point-wise MI estimator suitable for a discrete-time setting
- MI-TUNE: a self-supervised fine-tuning approach to align a pretrained T2I model without extra auxiliary models or inference overhead
- Extensive experimental campaign on multiple prompts datasets and pre-trained models

Thank you!

Mail: chao.wang@eurecom.fr

Check our paper & code: