Poisson-Dirac Neural Networks for Modeling Coupled Dynamical Systems across Domains

Razmik Arman Khosrovian¹, Takaharu Yaguchi², Hiroaki Yoshimura³, Takashi Matsubara⁴

¹Osaka University, ²Kobe University, ³Waseda University, ⁴Hokkaido University

Background

Goal: Predict physical phenomena without governing equations

Ex). Neural ODEs learn the dynamics f of a system $\dot{x} = f(x)$ by deep learning, where x is the state of the system.

[1] Chen+, NeurlPS, 2018

 Overly general models neglect underlying principles such as energy conservation.

Related Work

Hamiltonian Neural Networks (HNNs)

[2] Greydanus+, NeurlPS, 2019

[3] Zhong+, ICLR Workshop, 2020

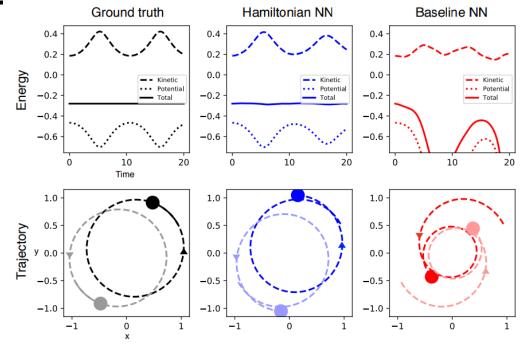
[4] Jin+, IEEE TNNLS, 2022

• describe the dynamics by Hamilton's equations, using generalized coordinate q and momenta p as the state.

$$\begin{pmatrix} \dot{\boldsymbol{q}} \\ \dot{\boldsymbol{p}} \end{pmatrix} = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix} \nabla H(\boldsymbol{q}, \boldsymbol{p})$$

- learn Hamiltonian H by a neural network.
 - → improves long-term prediction.
- have several extensions.

Ex). Dissipative SymODENs, Poisson Neural Networks (PNNs)

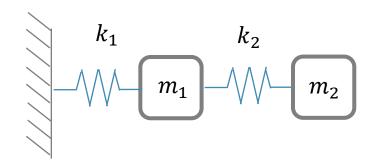


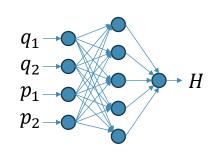
Related Works

Limitation 1

- The interactions of the elements that compose the system are implicitly embedded in neural networks.
 - → leading to reduced interpretability and prediction performance.

Ex). Modeling mass-spring system by HNNs.





$$H(q_1, q_2, p_1, p_2) = \frac{k_1 q_1^2}{2} + \frac{k_2 (q_2 - q_1)^2}{2} + \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2}$$

→ treating the system as a single, monolithic entity

Related Works

Limitation 2

The narrowed scope of applications.

Model	Degeneracy	Dissipation	External Input	Multiphysics
HNN	×	×	×	×
Dis. SymODEN	×	\checkmark	*	×
PNN	\checkmark	×	×	×
PoDiNN (proposed)	✓	✓	✓	✓

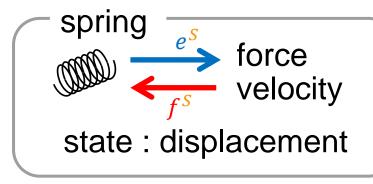
^{*} Available only for external force on mass.

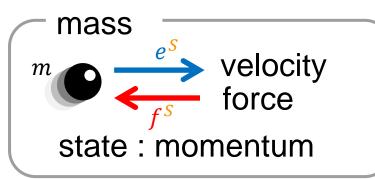
Poisson-Dirac Neural Networks (PoDiNNs)

- as a unified way to model various aspect of physical phenomena.
- learn each component individually, then use Dirac structure to explicitly represent the coupling among components.

Types of Components in PoDiNNs

energy-storing components



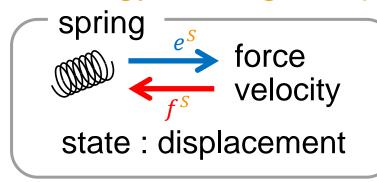


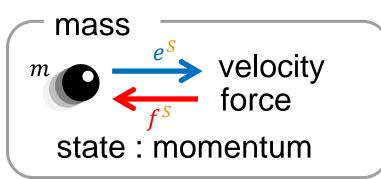
```
inputs : flow f = (f^S f^R f^I)
outputs : effort e = (e^S e^R e^I)
```

^S: energy-storing components

Types of Components in PoDiNNs

energy-storing components



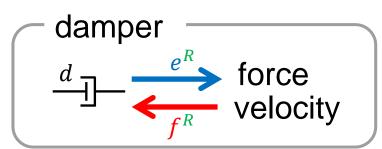


inputs : flow $f = (f^S f^R f^I)$ outputs : effort $e = (e^S e^R e^I)$

s : energy-storing components

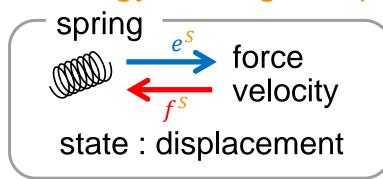
^R: energy-dissipating components

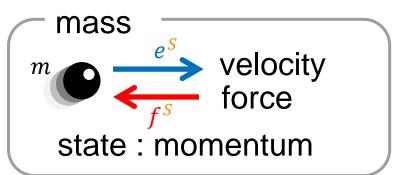
energy-dissipating components



Types of Components in PoDiNNs

energy-storing components





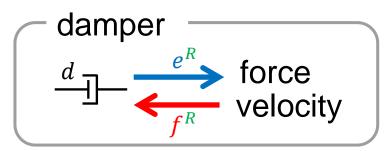
inputs : flow $f = (f^S f^R f^I)$ outputs : effort $e = (e^S e^R e^I)$

^S: energy-storing components

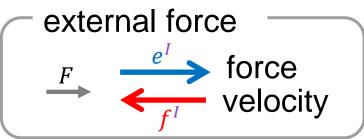
R: energy-dissipating components

: external inputs

energy-dissipating components



external inputs



Domain Mecl		hanical	Electro-Magnetic Hydrau		Hydraulic
Subdomain	Potential	Kinetic	Electric	Magnetic	Potential
flow(input)	velocity	force	current	voltage	volume flow rate
effort(output)	force	velocity	voltage	current	pressure
state	displacement	momentum	electric charge	magnetic flux	volume
energy-storing	spring	mass	capacitor	inductor	hydraulic tank
energy-dissipating	damper	_	resistor	resistor	_
external input	external force	moving boundary	voltage source	current source	incoming fluid flow

Domain Med		hanical	Electro-Magnetic		Hydraulic
Subdomain	Potential	Kinetic	Electric	Magnetic	Potential
flow(input)	velocity	force	current	voltage	volume flow rate
effort(output)	force	velocity	voltage	current	pressure
state	displacement	momentum	electric charge	magnetic flux	volume
energy-storing	spring	mass	capacitor	inductor	hydraulic tank
energy-dissipating	damper	_	resistor	resistor	_
external input	external force	moving boundary	voltage source	current source	incoming fluid flow

Domain	Domain Mechanical		Electro-l	Hydraulic	
Subdomain	Potential	Kinetic	Electric	Magnetic	Potential
flow(input)	velocity	force	current	voltage	volume flow rate
effort(output)	force	velocity	voltage	current	pressure
state	displacement	momentum	electric charge	magnetic flux	volume
energy-storing	spring	mass	capacitor	inductor	hydraulic tank
energy-dissipating	damper	_	resistor	resistor	_
external input	external force	moving boundary	voltage source	current source	incoming fluid flow

Domain Mec		hanical	Electro-Magnetic		Hydraulic
Subdomain	Potential	Kinetic	Electric	Magnetic	Potential
flow(input)	velocity	force	current	voltage	volume flow rate
effort(output)	force	velocity	voltage	current	pressure
state	displacement	momentum	electric charge	magnetic flux	volume
energy-storing	spring	mass	capacitor	inductor	hydraulic tank
energy-dissipating	damper	_	resistor	resistor	_
external input	external force	moving boundary	voltage source	current source	incoming fluid flow

Domain	omain Mecha		Electro-Magnetic		Hydraulic
Subdomain	Potential	Kinetic Electric		Magnetic	Potential
flow(input)	velocity	force	current	voltage	volume flow rate
effort(output)	force	velocity	voltage	current	pressure
state	displacement	momentum	electric charge	magnetic flux	volume
energy-storing	spring	mass	capacitor	inductor	hydraulic tank
energy-dissipating	damper	_	resistor	resistor	_
external input	external force	moving boundary	voltage source	current source	incoming fluid flow

Domain	Mechanical		Electro-	Hydraulic	
Subdomain	Potential	Kinetic	Electric	Magnetic	Potential
flow(input)	velocity	force	current	voltage	volume flow rate
effort(output)	force	velocity	voltage	current	pressure
state	displacement	momentum	electric charge	magnetic flux	volume
energy-storing	spring	mass	capacitor	inductor	hydraulic tank
energy-dissipating	damper	_	resistor	resistor	_
external input	external force	moving boundary	voltage source	current source	incoming fluid flow

Flow and Efforts

[5] van der Schaft+, 2014[6] Duindam+, 2009

• We consider fibers \mathcal{F}_u and \mathcal{E}_u of the vector bundles \mathcal{F} and $\mathcal{E}=\mathcal{F}^*$ at $u\in\mathcal{M}$ which are decomposed as

$$\mathcal{F}_u = \mathcal{F}_u^S \oplus \mathcal{F}_u^R \oplus \mathcal{F}_u^I$$
 and $\mathcal{E}_u = \mathcal{E}_u^S \oplus \mathcal{E}_u^R \oplus \mathcal{E}_u^I$, where $\mathcal{F}_u^S = T_u \mathcal{M}$ and $\mathcal{E}_u^S = T_u^* \mathcal{M}$.

• A point on the fibers \mathcal{F}_u and \mathcal{E}_u is denoted by

$$f = (f^S, f^R, f^I)$$
 and $e = (e^S, e^R, e^I)$.

• We refer to $f \in \mathcal{F}_u$ as flows, $e \in \mathcal{E}_u$ as efforts, and both collectively as port variables.

The Coupling of Flows and Efforts

Theorem

Consider vector bundles \mathcal{F} and $\mathcal{E} = \mathcal{F}^*$ over manifold \mathcal{M} .

The collection of $D_u = \{(f, e) \in \mathcal{F}_u \oplus \mathcal{E}_u \mid f = B_u^{\sharp}(e)\}$ for the bundle map $B_u^{\sharp} : \mathcal{E}_u \to \mathcal{F}_u$ of a bivector B is a Dirac structure $D \subset \mathcal{F} \oplus \mathcal{E}$.

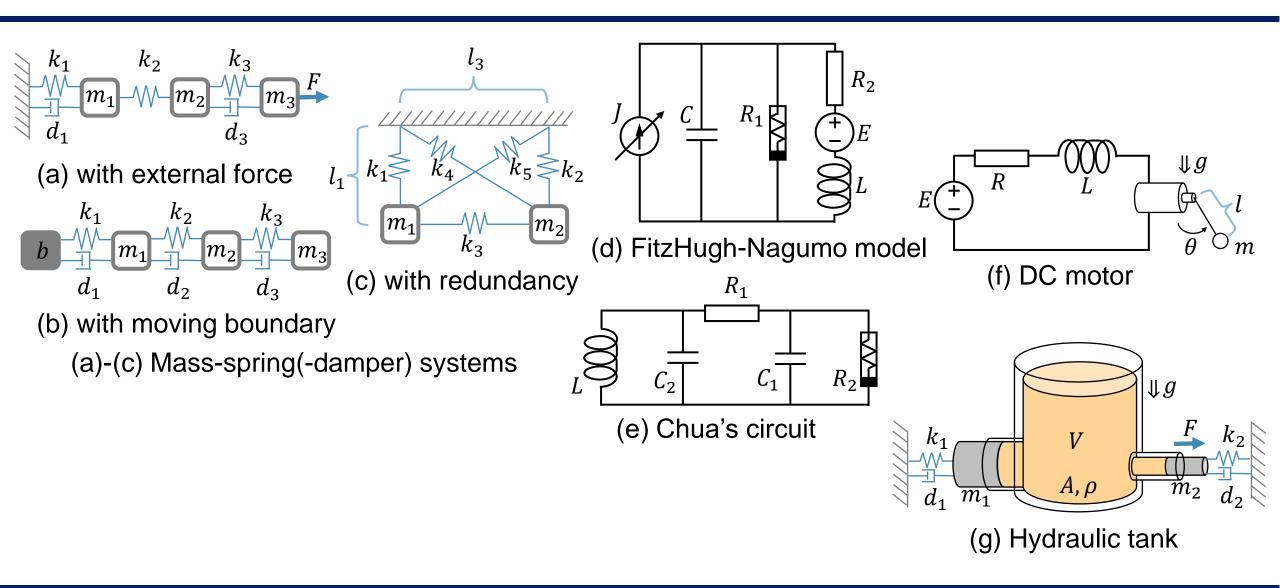
 This Dirac structure can reformulate Hamiltonian, Poisson, constrained Hamiltonian and port-Hamiltonian systems.

Formulation

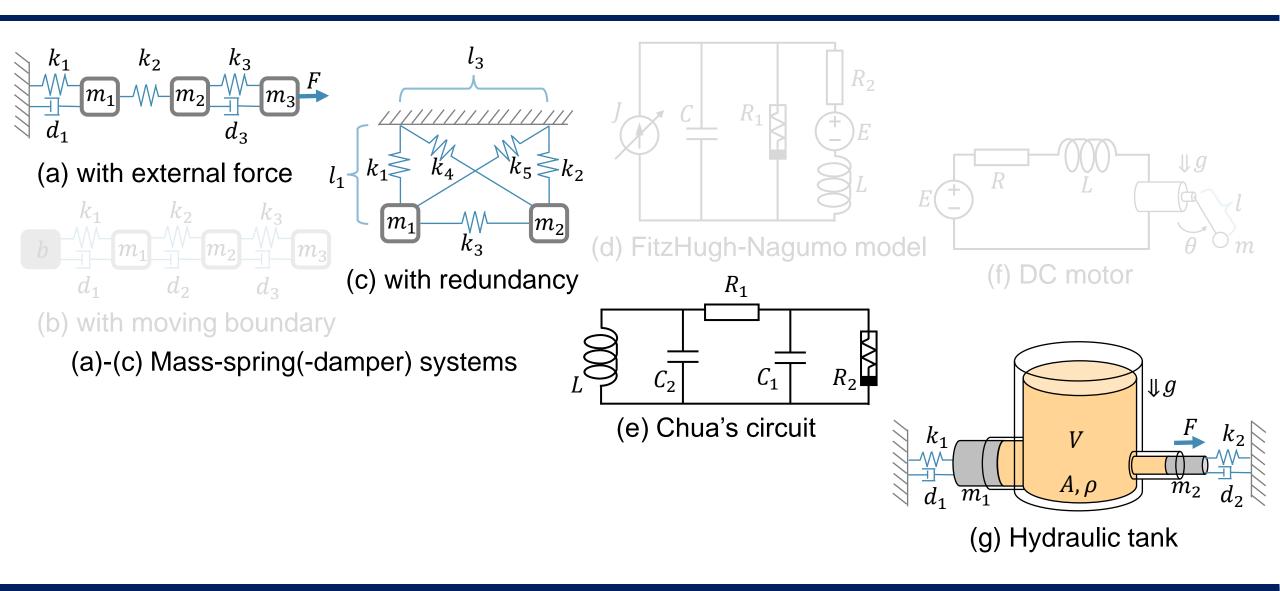
$$\begin{bmatrix} \mathbf{f}^{S} \\ \mathbf{f}^{R} \\ \mathbf{f}^{I} \end{bmatrix} = B_{u}^{\sharp} \begin{bmatrix} \mathbf{e}^{S} \\ \mathbf{e}^{R} \\ \mathbf{e}^{I} \end{bmatrix} \implies \begin{bmatrix} \dot{\mathbf{u}} \\ \mathbf{f}^{R} \\ \mathbf{f}^{I} \end{bmatrix} = B_{u}^{\sharp} \begin{bmatrix} \nabla_{u} H(\mathbf{u}) \\ R_{u}(\mathbf{f}^{R}) \\ \mathbf{e}^{I}(t) \end{bmatrix}$$

- •flow f^S : time evolution \dot{u} of the state u.
- effort e^{S} : differential dH of the Hamiltonian H.
- effort e^R : dissipative force determined by a mapping R_u : $f^R \mapsto e^R$.
- effort e^{I} : external input depending on time t.
- H, R_u and $B_u^{\#}$ are learned using deep learning.

Experiments: Datasets



Experiments: Datasets



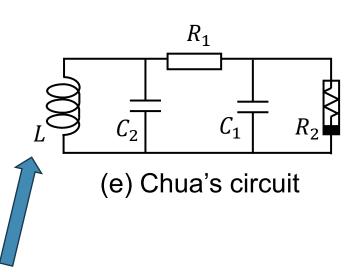
Experiments: Results

		Mass-Spring-Damper Systems					
Dataset	(a) with ex	kternal force	(c) with redundance				
Subdomain	MSE↓	VPT↑	MSE↓	VPT↑			
Neural ODE	7.68 ± 1.07	0.097 ± 0.008	2490.61 ± 1847.2	$4 0.099 \pm 0.00$			
HNN Variants*	8.31 ± 0.56	0.104 ± 0.017	634.22 ± 300.01	0.000 ± 0.00			
PoDiNN	4.33 ± 0.26	0.622 ± 0.002	0.11 ± 0.02	0.863 ± 0.03			
	× 10 ⁻¹	$\theta = 10^{-3}$	× 10 ⁻¹	$\theta = 10^{-3}$			
	Electric	Circuits	Multiphysics				
	(e) C	Chua's	(g) Hydraulic Tank				
-	MSE↓	VPT↑	MSE↓	VPT↑			
Neural ODE	14.74 ± 1.33	0.287 ± 0.016	30.62 ± 8.22	0.045 ± 0.010			
PoDiNN	9.21 ± 0.83	0.469 ± 0.010	5 . 42 ± 3.65	0.918 ± 0.013			
	× 10 ⁻¹	$\theta = 10^{-3}$	× 10 ⁻²	$\theta = 10^{-4}$			

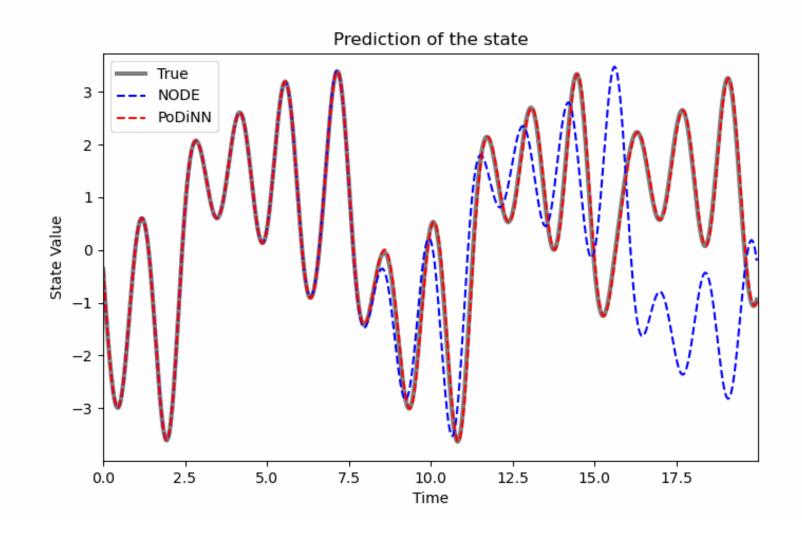
^{*}Dissipative SymODENs for (a), and PNNs for (b)

Experiments: Results

Visualization

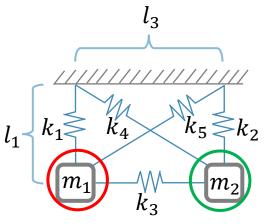


Predicting the current of the inductor

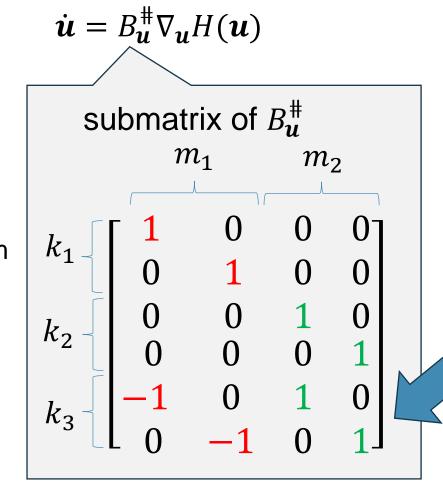


Experiments: Results

PoDiNNs successfully learned the coupling patterns.



(b) Mass-spring system with redundancy



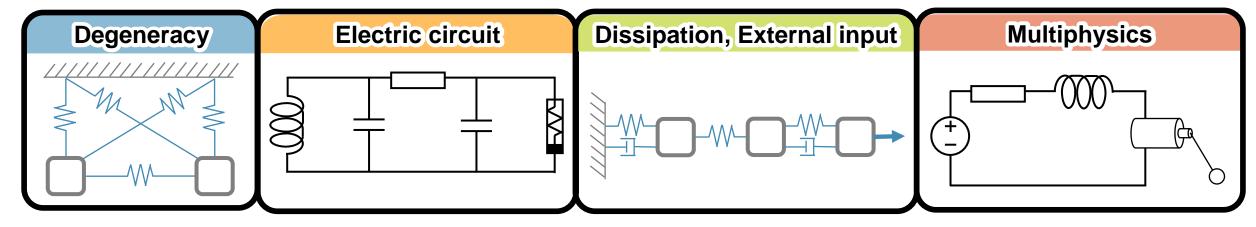
This system has degeneracy!

$$Row(k_3)$$

$$= Row(k_2) - Row(k_1)$$

Conclusion

We proposed PoDiNNs, a unified framework capable of handling various dynamical systems across multiple domains.



Through experiments, PoDiNNs

- achieved superior long-term prediction performance compared to existing methods.
- successfully identified the coupling patterns within the system.