MGCFNN: A Neural MultiGrid Solver with Novel Fourier Neural Network for High WaveNumber Helmholtz Equations

Yan Xie, Minrui Lv & Chen-song Zhang

LSEC, Academy of Mathematics and Systems Science, CAS

Introduction

Helmholtz equation

$$-\Delta u(x) - k^2(1 - \gamma i)u(x) = f(x), x \in [0, 1]^2$$

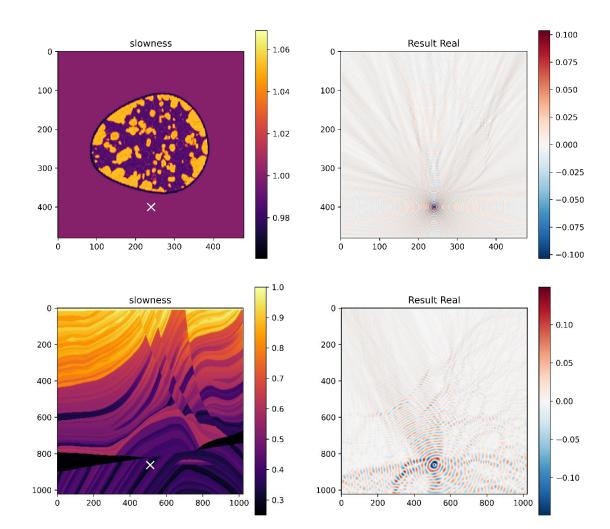
where $k = \omega \kappa(x) = \frac{\omega}{c(x)}$ is the wavenumber, κ/c is the

slowness/speed field

Notoriously hard to solve [1]

- ☐ High wavenumber
- ☐ Heterogeneous media
- No damping

- Large grid size, a thumb of rule: $\omega \kappa h \leq \frac{2\pi}{10}$, 10 points in one wavelength
- Complex propagation pattern
 reflection, refraction, diffraction...
- Slow decay rate (polynomial)



[1] Ernst O G, Gander M J. Why it is difficult to solve Helmholtz problems with classical iterative methods. Numerical analysis of multiscale problems, 2011: 325-363.

Fourier Neural Network (FNN)

Use Fourier transform to implement CNN with extended kernel size (see Fig.(b))

$$\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g)$$

Modify FNO[2]'s spectral convolution

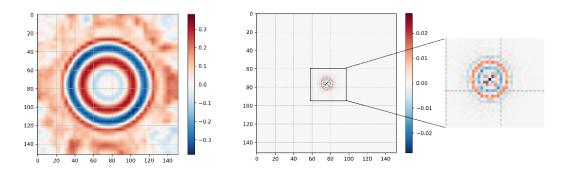
- Use full modes
- Higher frequency with larger gird size
- Interpolate weights from small size to target size (smoothness in Fig.(a))
- Gain kernel in space domain, then pad and Fourier transform back

Notes:

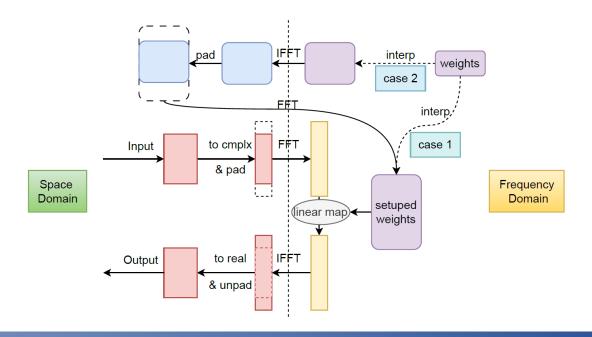
- Kernel is like a damped wave
- FNN in solve phase is like Born series method[3]

[2] Li, Zongyi, et al. "Fourier Neural Operator for Parametric Partial Differential Equations." International Conference on Learning Representations, 2021.

[3] Osnabrugge, G., et al. A convergent Born series for solving the inhomogeneous Helmholtz equation in arbitrarily large media. Journal of computational physics, 322 (2016): 113-124.



(a) FNN weights in frequency domain; (b) Equivalent kernel in space domain



Multigrid Architecture

Basically follow the multigrid architecture of our previous work MGCNN[4]

Setup phase

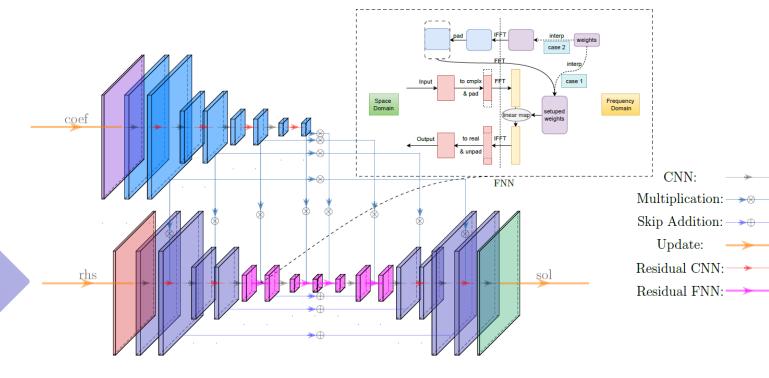
- Process coefficient nonlinearly
- Prepare $setupout_l$ for every level l

Solve phase

- Process source with $setupout_l$ $x_l = Net(setupout_l \cdot x_l) + x_l$
- Linear operation

Remark2:

- Multigrid levels Fixed for higher frequency in scalability test
- Double number of sweeps (layers) in coarser level



Remark1 (naming convention):

- MGCFNN: use FNN on some coarse levels of solve phase
- MGFNN: use FNN on all levels of solve phase

[4] Xie, Yan, et al. MGCNN: a learnable multigrid solver for sparse linear systems from PDEs on structured grids. arXiv:2312.11093 (2023).

Compare with neural operator methods

Supervised loss

$$L_{err} = \frac{1}{N} \sum_{i=1}^{N} ||u_i - sol_i||_2^2$$

- A single inference
- Separately evaluate models for

$$\kappa_{min} = 0.75, 0.5, 0.25$$

- Best respect of train error, test error and train time
- FNO, MWT and UNO have obvious early overfitting
- A single inference is not enough to reach low error

Table 1: Supervised learning on grid 256×256 with $\omega = 80\pi$ and $\kappa_{\min} = 0.75$. We record information Where the Best Test Error reaches.

		$\kappa_{\min} =$	0.75			
		Where	e Best Test Err			
Model	Train Error	Test Error	Train Error	Epoch	Train Time(s/epoch)	Parameters(MB)
MGFNN	0.035	0.061	0.035	120	93.2	8.9
MGCFNN	0.046	0.070	0.046	120	67.5	5.3
MgNO	0.063	0.079	0.063	120	110.3	4.6
FNO2D	0.085	0.561	0.496	4	103.6	46.1
MWT2D	0.119	0.527	0.475	4	147.0	26.0
U-NO	0.408	0.880	0.870	4	101.6	86.7
U-Net	0.534	0.803	0.758	31	89.9	31.0
DIL-RESNET	0.605	0.606	0.605	116	140.0	0.6
LSM	0.722	0.783	0.739	66	230.7	4.9

Table 2: Supervised learning on grid 256×256 with $\omega = 80\pi$ and $\kappa_{\min} = 0.50, 0.25$. We record information Where the Best Test Error reaches.

		$\kappa_{ m min} =$	0.50		$\kappa_{ m min}=0.25$					
		Where	e Best Test Err	Where Best Test Error						
Model	Train Error	Test Error	Train Error	Epoch	Train Error	Test Error	Train Error	Epoch		
MGFNN	0.075	0.187	0.122	25	0.126	0.431	0.253	18		
MGCFNN	0.101	0.206	0.104	88	0.190	0.458	0.396	7		
MGNO	0.209	0.333	0.221	81	0.361	0.633	0.614	14		
FNO2D	0.122	0.749	0.718	3	0.154	0.851	0.818	3		
MWT2D	0.169	0.728	0.669	4	0.186	0.845	0.821	3		
U-NO	0.389	0.871	0.864	3	0.362	0.935	0.930	4		
U-NET	0.634	0.774	0.716	57	0.575	0.806	0.778	26		
DIL-RESNET	0.627	0.629	0.627	117	0.699	0.702	0.699	119		
LSM	0.852	0.860	0.852	117	0.867	0.878	0.874	38		

Iterative Solving

Table 3: Scalability comparison with other solvers.

r	tol=1E-7	$\gamma = 0.01 (RTX3090) \text{Lerer et al.} (2024)$			$\gamma = 0.0$ (A	A100 80G) Cui et al	$\gamma = 0.0 (\text{CPU})$		
		time (s) & iters			time	(s) & iters	time(s)		
ω	grid	MGCFNN	ENCODER-SOLVER	speedup	MGCFNN	WAVE-ADR-NS	speedup	CHOLMOD	speedup
80π	511×511	0.12(9)	0.65(43)	5.5	0.16(14)	15.07(28)	94.8	0.49	3.1
160π	1023×1023	0.19(11)	1.29(68)	6.8	0.30(22)	34.98(54)	116.2	8.88	29.5
320π	2047×2047	0.58(14)	3.40(85)	5.8	1.15(40)	91.63(122)	79.6	38.91	33.8
640π	4095×4095	2.77(18)	13.34(117)	4.8	8.55(83)	286.14(247)	33.5	183.61	21.5

Unsupervised loss

$$L_{res} = \frac{1}{N} \sum_{i=1}^{N} ||rhs_i - A_i sol_i||_2^2$$

Reach low relative residual 1E-7

Outperform other

- ✓ Pure AI solver: encoder-solver [5]
- ✓ Al-enhanced traditional solver: Wave-ADR-NS [6]
- ✓ Sparse direct solver: CHOLMOD [7]

^[5] Bar Lerer, et al. Multigrid-augmented deep learning preconditioners for the Helmholtz equation using compact implicit layers. SIAM Journal on Scientific Computing, pp. S123–S144, 2024.

^[6] Chen Cui, et al. A neural multigrid solver for Helmholtz equations with high wavenumber and heterogeneous media. arXiv:2404.02493, 2024.

^[7] Timothy A Davis and William W Hager. Dynamic supernodes in sparse Cholesky update/downdate and triangular solves. ACM Transactions on Mathematical Software (TOMS), 35(4):1–23, 2009.

Ablation Study

MGCFNN combine the complementary features of FNN and multigrid architecture

MGCFNN is the SOTA choice

- No need using FNN at all levels
 MGFNN only reduce few iters and need more time
- Better convergence than MGCNN
 MGCNN rely on GMRES to reduce iters significantly

Table 4: Model architecture ablation study.

		$256, \omega = 80\pi$	grid size 480×480 , $\omega = 150\pi$										
rtol=1E-7	st	standalone			GMRES			standalone			GMRES		
	MGCFNN	MGFNN	FNN	MGCFNN	MGFNN	FNN	MGCFNN	MGFNN	FNN	MGCFNN	MGFNN	FNN	
iters	22	19	55	15	13	24	12	9	54	11	10	22	
time(s)	0.136	0.135	0.270	0.111	0.116	0.151	0.093	0.101	0.724	0.105	0.124	0.365	

Table 5: Scalability comparison between MGCFNN and MGCNN.

rtol=1E-7		standalone					GMRES			
		MG	MGCFNN		MGCNN		MG	CFNN	MC	GCNN
ω	size	iters time(s)		iters	time(s)		iters	time(s)	iters	time(s)
80π	511×511	14	0.17	35	0.27		12	0.17	21	0.20
160π	1023×1023	22	0.31	61	0.55		20	0.31	36	0.37
320π	2047×2047	41	1.18	115	2.33		35	1.13	71	1.65
640π	4095×4095	83	8.18	231	18.66		72	8.48	146	14.56

Thanks for Your Listening

xieyan2021@lsec.cc.ac.cn

https://gitee.com/xiehuohuo77/mgcfnn/