Metalic

Meta-Learning In-Context with Protein Language Models

Jacob Beck, Shikha Surana, Manus McAuliffe, Oliver Bent, Thomas D. Barrett, Juan Jose Garau Luis, Paul Duckworth

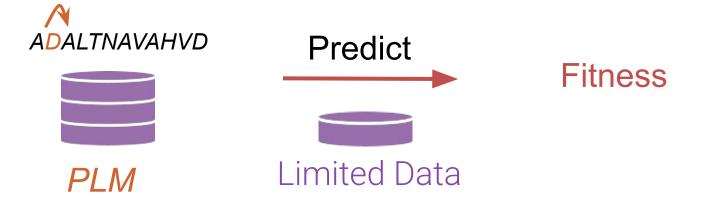
Summary

We introduce *Metalic* – leveraging protein foundation models, in-context learning (ICL) over related tasks, and fine-tuning, for protein fitness prediction. Metalic achieves state-of-the-art results on ProteinGym benchmarks with less computation and fewer parameters.

Background

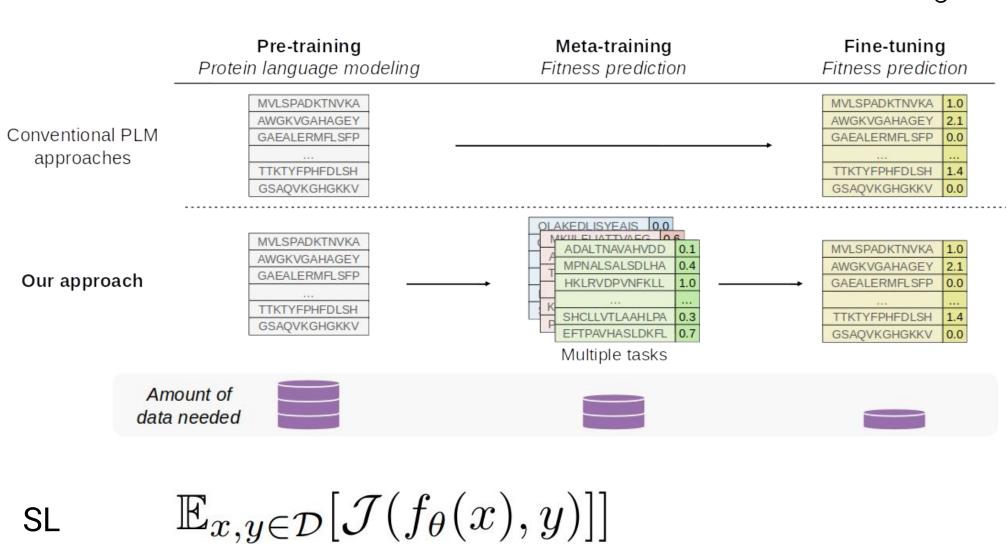
Goal: We have a protein; we want to optimize a property, called *fitness* **Problem:** We have limited data

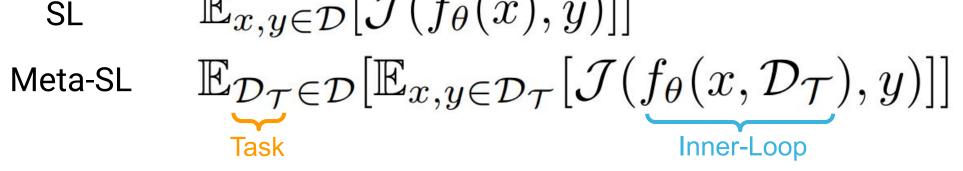
Existing Solution: Fine-tune a Protein Language Model (PLM)



Each individual task has limited data, however, there are many related proteins and properties

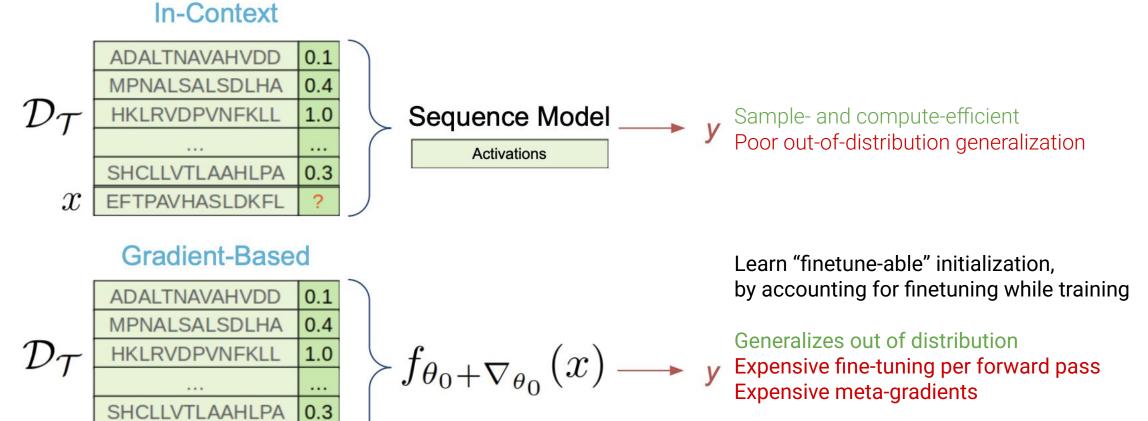
Solution: Learn how to learn from limited data – i.e. *Meta-learning*





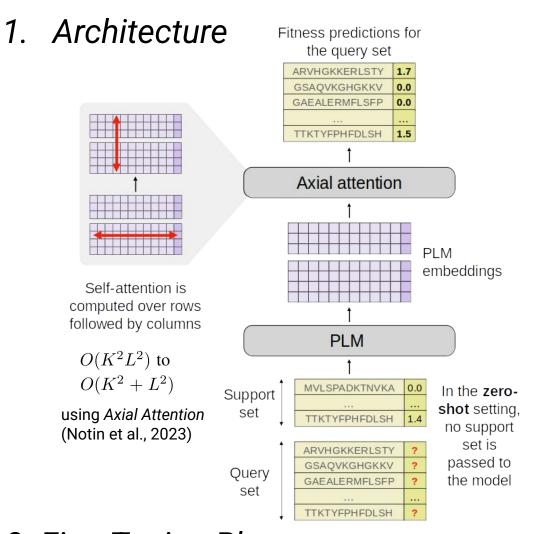
Two Types of Inner-Loop

EFTPAVHASLDKFL



Metalic performs in-context meta-learning, followed by fine-tuning – the best of both worlds

Method: Metalic



3. Fine-Tuning Phase

Combining in-context learning & fine-tuning (FT) creates a unique problem

- Query set labels are not available for FT
 If we update on
- If we update on support set, we could memorize

Solution

- Divide support set into small support & query sets (ignoring original query set)
- 2) Then, recombine entire support and query set for in-context predictions

2. Meta-Training Phase

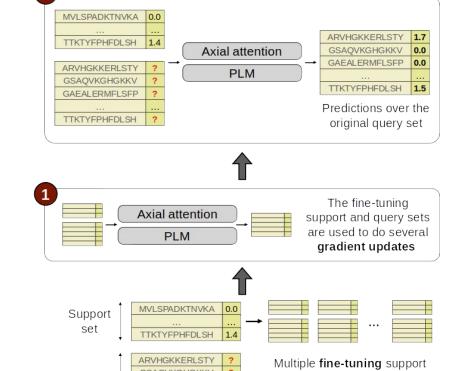
Preference Loss¹

 $p\left(y_i^{(Q)} > y_j^{(Q)}\right) = \sigma\left(v_i^{(Q)} - v_j^{(Q)}\right)$

Binary Cross Entropy over Query Set $\mathcal{L}(\theta, \mathcal{D}_{\mathcal{T}}^{(\mathrm{Q})}, \mathcal{D}_{\mathcal{T}}^{(\mathrm{S})}) = -\sum^{N^{(\mathrm{Q})}} \sum^{N^{(\mathrm{Q})}} \mathbb{I}\left(y_i^{(\mathrm{Q})} > y_j^{(\mathrm{Q})}\right) \log \sigma \left(v_i^{(\mathrm{Q})} - v_j^{(\mathrm{Q})}\right)$

Evaluate Across Tasks

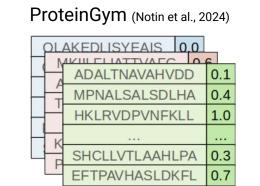
 $\mathcal{J}(\theta, \mathcal{D}) = -\mathbb{E}_{\mathcal{D}_{\mathcal{T}} \in \mathcal{D}} \mathbb{E}_{(\mathcal{D}_{\mathcal{T}}^{(S)}, \mathcal{D}_{\mathcal{T}}^{(Q)}) \in \mathcal{D}_{\mathcal{T}}} \mathcal{L}(\theta, \mathcal{D}_{\mathcal{T}}^{(Q)}, \mathcal{D}_{\mathcal{T}}^{(S)})$



and query sets are derived

from the support set

Results

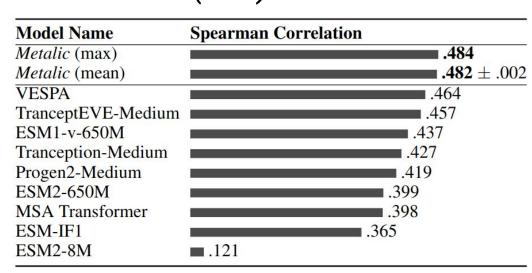


We consider protein fitness tasks of length < 750 (to fit a single A100-80Gb)

121 single mutation DMS68 multiple mutation DMS

Hold out 8 single and 5 multi-mutant DMS for evaluation.

1. Zero-Shot (n=0)



SOTA, despite using ESM2-8M as PLM.
Baseline predictions from (Notin 2024). Baselines assume PLM likelihood correlate with fitness whereas

Metalic meta-learns to use in-context information

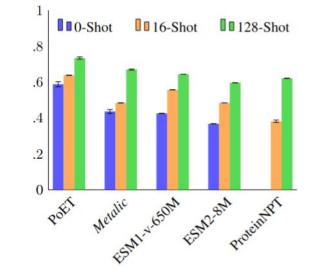
2. Few-Shot (n=16, 128)

GAEALERMFLSFP

Model Name	n = 16	n = 128
Metalic	$.484 \pm .001$	$.552 \pm .009$
Metalic-AuxIF	$.500 \pm .002$	$.556 \pm .005$
ESM1-v-650M	$.452 \pm .000$	$.553 \pm .000$
ESM2-8M	$.226 \pm .000$	$.406 \pm .000$
PoET	$.475 \pm .026$	$.588 \pm .006$
ProteinNPT	$.192 \pm .003$	$.443 \pm .003$

Strong, despite ESM2-8M as PLM and NPT architecture ESM-IF1 as input (n=0) improves performance Baselines are re-trained. Code from (Hawking-Hooker 2024). **Metalic** only outperformed in 128 by PoET.

3. Multi-Mutant



Outperformed by PoET (and ESM-IF) on multi-mutants. Need more data!

All components of **Metalic** are needed!

4. Ablations

Model Name	n = 0	n = 128
Metalic	.482 ± .002	$.552 \pm .009$
<i>Metalic</i> -NoFT	$.482 \pm .002$	$.488 \pm .012$
Metalic-NoPref	$.465 \pm .011$	$.520 \pm .006$
Metalic-NoAug	$.464 \pm .011$	$.558 \pm .002$
<i>Metalic</i> -NoICL	$.441 \pm .002$	$.529 \pm .002$
<i>Metalic</i> -NoMetaTrain	$1046 \pm .018$	$.346 \pm .003$

5. Gradient-based Comparison

Model Name	Total Gradient Computations	n = 128
Metalic (150k)	150,000	$.562 \pm .004$
Metalic-Reptile	150,000	$.562 \pm .004$
Metalic (50k)	50,000	$.552 \pm .009$
Reptile-3-100	150,000	$.539 \pm .001$
Reptile-3-3	150,000	$.499 \pm .008$

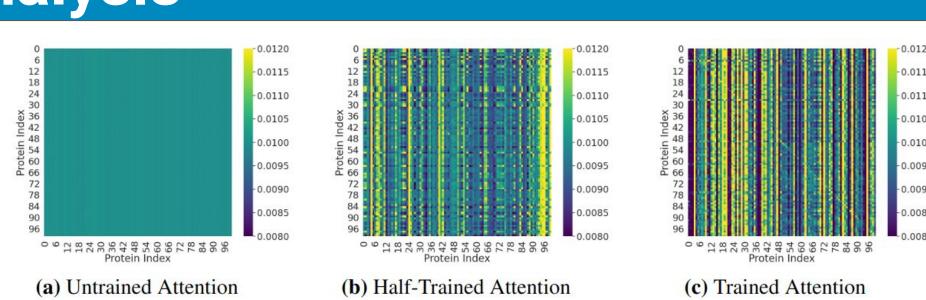
Reptile is a gradient-based method

Metalic (50k) outperforms Reptile

Metalic with Reptile (**Metalic**-Reptile) is marginally better, but not when controlling for compute (150k)

Conclusion: Accounting for fine-tuning during meta-training is needlessly complicated

Analysis



Query set **attention maps** in zero-shot setting

All rows show attention to other proteins; implying the need for **ICL** Demonstrates the emergence of **unsupervised ICL**